corrExpPredPlot | R Documentation |
Generate correlation plots between predicted and expected cell type
proportions of test data. Correlation plots can be shown all mixed or either
split by cell type (CellType
) or the number of different cell types
present in the spots (nCellTypes
).
corrExpPredPlot(
object,
colors,
facet.by = NULL,
color.by = "CellType",
corr = "both",
filter.sc = TRUE,
pos.x.label = 0.01,
pos.y.label = 0.95,
sep.labels = 0.15,
size.point = 0.1,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...
)
object |
|
colors |
Vector of colors to be used. |
facet.by |
Show data in different panels. Options are |
color.by |
Variable used to color data. Options are |
corr |
Correlation value shown as an annotation on the plot. Available
metrics are Pearson's correlation coefficient ( |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only mixed transcriptional profile errors are shown ( |
pos.x.label |
X-axis position of correlation annotations (0.95 by default). |
pos.y.label |
Y-axis position of correlation annotations (0.1 by default). |
sep.labels |
Space separating annotations if |
size.point |
Size of points (0.1 by default). |
alpha.point |
Alpha of points (0.1 by default). |
ncol |
Number of columns if |
nrow |
Number of rows if |
title |
Title of the plot. |
theme |
ggplot2 theme. |
... |
Additional arguments for the facet_wrap function
of ggplot2 if |
A ggplot object.
calculateEvalMetrics
distErrorPlot
blandAltmanLehPlot
barErrorPlot
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
SDDLS <- genMixedCellProp(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE
)
SDDLS <- simMixedProfiles(SDDLS)
# training of DDLS model
SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 15,
num.epochs = 5
)
# evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
# correlations by cell type
corrExpPredPlot(
object = SDDLS,
facet.by = "CellType",
color.by = "CellType",
corr = "both"
)
# correlations of all samples mixed
corrExpPredPlot(
object = SDDLS,
facet.by = NULL,
color.by = "CellType",
corr = "ccc",
pos.x.label = 0.2,
alpha.point = 0.3
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.