distErrorPlot | R Documentation |
Generate box or violin plots to show how errors are distributed. Errors can
be shown all mixed or either split by cell type (CellType
) or number
of cell types present in the spots (nCellTypes
). See the
facet.by
argument and examples for more details.
distErrorPlot(
object,
error,
colors,
x.by = "pBin",
facet.by = NULL,
color.by = "nCellTypes",
filter.sc = TRUE,
error.label = FALSE,
pos.x.label = 4.6,
pos.y.label = NULL,
size.point = 0.1,
alpha.point = 1,
type = "violinplot",
ylimit = NULL,
nrow = NULL,
ncol = NULL,
title = NULL,
theme = NULL,
...
)
object |
|
error |
Error to be represented. Available metric errors are: absolute
error ( |
colors |
Vector of colors to be used. |
x.by |
Variable used for the X-axis. When |
facet.by |
Show data in different panels. Options are |
color.by |
Variable used to color data. Options are |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only mixed transcriptional profile errors are shown ( |
error.label |
Boolean indicating whether to show the average error as a
plot annotation ( |
pos.x.label |
X-axis position of error annotations. |
pos.y.label |
Y-axis position of error annotations. |
size.point |
Size of points (0.1 by default). |
alpha.point |
Alpha of points (0.1 by default). |
type |
Type of plot: |
ylimit |
Upper limit in Y-axis if it is required ( |
nrow |
Number of rows if |
ncol |
Number of columns if |
title |
Title of the plot. |
theme |
ggplot2 theme. |
... |
Additional arguments for the facet_wrap function
of ggplot2 if |
A ggplot object.
calculateEvalMetrics
corrExpPredPlot
blandAltmanLehPlot
barErrorPlot
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(
x = paste0("CellType", seq(6)), size = 20, replace = TRUE
)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
SDDLS <- genMixedCellProp(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE
)
SDDLS <- simMixedProfiles(SDDLS)
# training of DDLS model
SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 15,
num.epochs = 5
)
# evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
# representation, for more examples, see the vignettes
distErrorPlot(
object = SDDLS,
error = "AbsErr",
facet.by = "CellType",
color.by = "nCellTypes",
error.label = TRUE
)
distErrorPlot(
object = SDDLS,
error = "AbsErr",
x.by = "CellType",
facet.by = NULL,
color.by = "CellType",
error.label = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.