Nothing
print.spatgev <- function(x, digits = max(3, getOption("digits") - 3), ...){
cat(" Model: Spatial GEV model\n")
cat(" Deviance:", x$deviance, "\n")
cat(" TIC:", TIC(x), "\n\n")
param <- x$fitted.values
loc.idx <- which(substr(names(param), 1, 3) == "loc")
scale.idx <- which(substr(names(param), 1, 5) == "scale")
shape.idx <- which(substr(names(param), 1, 5) == "shape")
cat(" Location Parameters:\n")
print.default(format(param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Scale Parameters:\n")
print.default(format(param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Shape Parameters:\n")
print.default(format(param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
loc.idx <- which(substr(names(param), 1, 12) == "tempCoeffLoc")
scale.idx <- which(substr(names(param), 1, 14) == "tempCoeffScale")
shape.idx <- which(substr(names(param), 1, 14) == "tempCoeffShape")
if ((length(loc.idx) + length(scale.idx) + length(shape.idx)) > 0){
cat("\nTemporal Parameters\n")
if (length(loc.idx) > 0){
cat(" Location Parameters:\n")
print.default(format(param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(scale.idx)> 0){
cat(" Scale Parameters:\n")
print.default(format(param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(shape.idx)>0){
cat(" Shape Parameters:\n")
print.default(format(param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
}
if(!is.null(x$std.err)) {
cat("\nStandard Errors\n")
print.default(format(x$std.err, digits = digits), print.gap = 2,
quote = FALSE)
}
if(!is.null(x$var.cov)) {
cat("\nAsymptotic Variance Covariance\n")
print.default(format(x$var.cov, digits = digits), print.gap = 2,
quote = FALSE)
}
cat("\nOptimization Information\n")
cat(" Convergence:", x$convergence, "\n")
cat(" Function Evaluations:", x$counts["function"], "\n")
if(!is.na(x$counts["gradient"]))
cat(" Gradient Evaluations:", x$counts["gradient"], "\n")
if(!is.null(x$message)) cat("\nMessage:", x$message, "\n")
cat("\n")
}
print.maxstab <- function(x, digits = max(3, getOption("digits") - 3), ...){
cat(" Estimator:", x$est, "\n")
cat(" Model:", x$model, "\n")
cat(" Weighted:", x$weighted, "\n")
if (x$est == 'MPLE'){
cat(" Pair. Deviance:", x$deviance, "\n")
cat(" TIC:", TIC(x), "\n")
}
if (x$est == "Least Squares")
cat(" Objective Value:", x$opt.value, "\n")
if ((x$model == "Schlather") || (x$model == "Geometric") || (x$model == "Brown-Resnick") ||
(x$model == "Extremal-t")){
if (x$cov.mod == "emp")
cov.mod <- "Empirical"
if (x$cov.mod == "whitmat")
cov.mod <- "Whittle-Matern"
if (x$cov.mod == "powexp")
cov.mod <- "Powered Exponential"
if (x$cov.mod == "cauchy")
cov.mod <- "Cauchy"
if (x$cov.mod == "caugen")
cov.mod <- "Generalized Cauchy"
if (x$cov.mod == "bessel")
cov.mod <- "Bessel"
if (x$cov.mod == "brown")
cov.mod <- "Fractional Brownian Motion"
cat("Covariance Family:", cov.mod, "\n")
cat("\nEstimates\n")
cat(" Marginal Parameters:\n")
if (x$fit.marge){
idx <- which(names(x$fitted.values) == "alpha")
idx <- c(idx, which(names(x$fitted.values) == "sigma2"))
idx <- c(idx, which(names(x$fitted.values) == "nugget"))
idx <- c(idx, which(names(x$fitted.values) == "range"))
idx <- c(idx, which(names(x$fitted.values) == "smooth"))
idx <- c(idx, which(names(x$fitted.values) == "smooth2"))
idx <- c(idx, which(names(x$fitted.values) == "DoF"))
margin.param <- x$fitted.values[-idx]
loc.idx <- which(substr(names(margin.param), 1, 3) == "loc")
scale.idx <- which(substr(names(margin.param), 1, 5) == "scale")
shape.idx <- which(substr(names(margin.param), 1, 5) == "shape")
cat(" Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
loc.idx <- which(substr(names(margin.param), 1, 12) == "tempCoeffLoc")
scale.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffScale")
shape.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffShape")
if (length(loc.idx) > 0){
cat("Temporal Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(scale.idx)> 0){
cat("Temporal Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(shape.idx)>0){
cat("Temporal Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
cat(" Dependence Parameters:\n")
print.default(format(x$fitted.values[idx], digits = digits), print.gap = 2,
quote = FALSE)
}
else{
cat(" Assuming unit Frechet.\n\n")
cat(" Dependence Parameters:\n")
print.default(format(x$fitted.values, digits = digits), print.gap = 2,
quote = FALSE)
}
}
else{
cat("Covariance Family:", x$cov.mod, "\n")
cat("\nEstimates\n")
cat(" Marginal Parameters:\n")
if (x$fit.marge){
idx <- which(substr(names(x$fitted.values), 1, 3) == "cov")
margin.param <- x$fitted.values[-idx]
loc.idx <- which(substr(names(margin.param), 1, 3) == "loc")
scale.idx <- which(substr(names(margin.param), 1, 5) == "scale")
shape.idx <- which(substr(names(margin.param), 1, 5) == "shape")
cat(" Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
loc.idx <- which(substr(names(margin.param), 1, 12) == "tempCoeffLoc")
scale.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffScale")
shape.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffShape")
if (length(loc.idx) > 0){
cat("Temporal Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(scale.idx)> 0){
cat("Temporal Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(shape.idx)>0){
cat("Temporal Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
cat(" Dependence Parameters:\n")
print.default(format(x$fitted.values[idx], digits = digits), print.gap = 2,
quote = FALSE)
}
else{
cat(" Not estimated.\n")
cat(" Dependence Parameters:\n")
print.default(format(x$fitted.values, digits = digits), print.gap = 2,
quote = FALSE)
}
}
if(!is.null(x$std.err)) {
cat("\nStandard Errors\n")
print.default(format(x$std.err, digits = digits), print.gap = 2,
quote = FALSE)
}
if(!is.null(x$var.cov)) {
cat("\nAsymptotic Variance Covariance\n")
print.default(format(x$var.cov, digits = digits), print.gap = 2,
quote = FALSE)
}
if(!is.null(x$corr)) {
cat("\nCorrelation\n")
print.default(format(x$corr, digits = digits), print.gap = 2,
quote = FALSE)
}
cat("\nOptimization Information\n")
cat(" Convergence:", x$convergence, "\n")
cat(" Function Evaluations:", x$counts["function"], "\n")
if(!is.na(x$counts["gradient"]))
cat(" Gradient Evaluations:", x$counts["gradient"], "\n")
if(!is.null(x$message)) cat("\nMessage:", x$message, "\n")
cat("\n")
}
logLik.maxstab <- function(object, ...){
llk <- object$logLik
attr(llk, "df") <- length(fitted(object))
class(llk) <- "logLik"
return(llk)
}
logLik.copula <- function(object, ...){
llk <- object$logLik
attr(llk, "df") <- length(fitted(object))
class(llk) <- "logLik"
return(llk)
}
profile2d <- function(fitted, ...){
UseMethod("profile2d")
}
print.pspline2 <- function(x, ...){
cat("Call:\n")
print(x$call)
cat("\n Rank:", x$rank, "\t(G)CV Score:", round(x$cv, 3),
"\n")
cat("Degree:", x$degree, "\t Penalty: ",
round(x$penalty, 3), "\n")
cat("\n Degree of freedom:", round(x$df, 3), "\n")
cat("Res. Degree of freedom:", round(x$res.df, 3), "\n")
}
TIC <- function(object, ..., k = 2){
UseMethod("TIC")
}
print.latent <- function(x, digits = max(3, getOption("digits") - 3), ...,
level = 0.95){
if ((level > 1) || (level < 0))
stop("'level' must lie in [0, 1]")
alpha <- 0.5 * (1 - level)
cat("Effective length:", nrow(x$chain.loc), "\n")
cat(" Burn-in:", x$burn.in, "\n")
cat(" Thinning:", x$thin, "\n")
cat(" Effective NoP:", x$eNoP, "\n")
cat(" DIC:", x$DIC, "\n\n")
cat(" Regression Parameters:\n")
cat(" Location Parameters:\n")
chain <- x$chain.loc
loc.idx <- which(substr(colnames(chain), 1, 2) == "lm")
post.mean <- colMeans(chain[,loc.idx, drop=FALSE])
ci.lower <- apply(chain[,loc.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,loc.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
cat(" Scale Parameters:\n")
chain <- x$chain.scale
scale.idx <- which(substr(colnames(chain), 1, 2) == "lm")
post.mean <- colMeans(chain[,scale.idx, drop=FALSE])
ci.lower <- apply(chain[,scale.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,scale.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
cat(" Shape Parameters:\n")
chain <- x$chain.shape
shape.idx <- which(substr(colnames(chain), 1, 2) == "lm")
post.mean <- colMeans(chain[,shape.idx, drop=FALSE])
ci.lower <- apply(chain[,shape.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,shape.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
cat("\n\n")
cat(" Latent Parameters:\n")
cat(" Location Parameters:\n")
cat(" Covariance family:", x$cov.mod[1],"\n")
chain <- x$chain.loc
loc.idx <- which(colnames(chain) %in% c("sill", "range", "smooth"))
post.mean <- colMeans(chain[,loc.idx, drop=FALSE])
ci.lower <- apply(chain[,loc.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,loc.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
cat(" Scale Parameters:\n")
cat(" Covariance family:", x$cov.mod[2],"\n")
chain <- x$chain.scale
scale.idx <- which(colnames(chain) %in% c("sill", "range", "smooth"))
post.mean <- colMeans(chain[,scale.idx, drop=FALSE])
ci.lower <- apply(chain[,scale.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,scale.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
cat(" Shape Parameters:\n")
cat(" Covariance family:", x$cov.mod[3],"\n")
chain <- x$chain.shape
shape.idx <- which(colnames(chain) %in% c("sill", "range", "smooth"))
post.mean <- colMeans(chain[,shape.idx, drop=FALSE])
ci.lower <- apply(chain[,shape.idx, drop=FALSE], 2, quantile, alpha)
ci.upper <- apply(chain[,shape.idx, drop=FALSE], 2, quantile, 1-alpha)
dummy <- rbind(ci.lower = ci.lower, post.mean = post.mean,
ci.upper = ci.upper)
print.default(format(dummy, digits = digits), print.gap = 2, quote = FALSE)
}
print.copula <- function(x, digits = max(3, getOption("digits") - 3), ...){
cat(" Copula:", x$copula, "\n")
cat(" Deviance:", x$deviance, "\n")
cat(" AIC:", AIC(x), "\n")
if (x$cov.mod == "whitmat")
cov.mod <- "Whittle-Matern"
if (x$cov.mod == "powexp")
cov.mod <- "Powered Exponential"
if (x$cov.mod == "cauchy")
cov.mod <- "Cauchy"
if (x$cov.mod == "caugen")
cov.mod <- "Generalized Cauchy"
if (x$cov.mod == "bessel")
cov.mod <- "Bessel"
cat("Covariance Family:", cov.mod, "\n")
idx <- which(names(x$fitted.values) == "DoF")
idx <- c(idx, which(names(x$fitted.values) == "nugget"))
idx <- c(idx, which(names(x$fitted.values) == "range"))
idx <- c(idx, which(names(x$fitted.values) == "smooth"))
idx <- c(idx, which(names(x$fitted.values) == "smooth2"))
cat("\nEstimates\n")
cat(" Marginal Parameters:\n")
if (x$fit.marge){
margin.param <- x$fitted.values[-idx]
loc.idx <- which(substr(names(margin.param), 1, 3) == "loc")
scale.idx <- which(substr(names(margin.param), 1, 5) == "scale")
shape.idx <- which(substr(names(margin.param), 1, 5) == "shape")
cat(" Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
cat(" Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
loc.idx <- which(substr(names(margin.param), 1, 12) == "tempCoeffLoc")
scale.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffScale")
shape.idx <- which(substr(names(margin.param), 1, 14) == "tempCoeffShape")
if (length(loc.idx) > 0){
cat("Temporal Location Parameters:\n")
print.default(format(margin.param[loc.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(scale.idx)> 0){
cat("Temporal Scale Parameters:\n")
print.default(format(margin.param[scale.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
if (length(shape.idx)>0){
cat("Temporal Shape Parameters:\n")
print.default(format(margin.param[shape.idx], digits = digits), print.gap = 2,
quote = FALSE)
}
}
else
cat(" Assuming unit Frechet.\n\n")
cat(" Dependence Parameters:\n")
print.default(format(x$fitted.values[idx], digits = digits), print.gap = 2,
quote = FALSE)
if(!is.null(x$std.err)) {
cat("\nStandard Errors\n")
print.default(format(x$std.err, digits = digits), print.gap = 2,
quote = FALSE)
}
if(!is.null(x$var.cov)) {
cat("\nAsymptotic Variance Covariance\n")
print.default(format(x$var.cov, digits = digits), print.gap = 2,
quote = FALSE)
}
if(!is.null(x$corr)) {
cat("\nCorrelation\n")
print.default(format(x$corr, digits = digits), print.gap = 2,
quote = FALSE)
}
cat("\nOptimization Information\n")
cat(" Convergence:", x$convergence, "\n")
cat(" Function Evaluations:", x$counts["function"], "\n")
if(!is.na(x$counts["gradient"]))
cat(" Gradient Evaluations:", x$counts["gradient"], "\n")
if(!is.null(x$message)) cat("\nMessage:", x$message, "\n")
cat("\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.