Description Usage Arguments Value Author(s) See Also Examples
Computes the long term average of observations and cross-validated
predictions for each of the sites in object. The long term averages
are computed using only timepoints that have observations, this
applies to both the observed and predicted. Also the function allows for a
transformation: if requested the transformation is applied before the
averaging.
1 | computeLTA(object, transform = function(x) { return(x) })
|
object |
A |
transform |
Transform observations (without bias correction) and
predictions before
computing averages; e.g. |
Returns a (number of locations) - by - 4 matrix with the observed and predicted value (using the three different model parts) for each location.
Johan Lindstrom
Other predCVSTmodel functions: estimateCV.STmodel
Other cross-validation functions: createCV,
dropObservations,
estimateCV.STmodel,
predictNaive
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ##load data
data(pred.cv.mesa)
##compute long term averages of predictions and observations
pred.lta <- computeLTA(pred.cv.mesa)
##we can now compare observed and predicted averages at each site
plot(pred.lta[,"obs"], pred.lta[,"EX.mu"], pch=1,
xlim=range(pred.lta), ylim=range(pred.lta),
xlab="obs", ylab="predictions")
##for the different model components
points(pred.lta[,"obs"], pred.lta[,"EX.mu.beta"], pch=3, col=2)
points(pred.lta[,"obs"], pred.lta[,"EX"], pch=4, col=3)
abline(0,1)
##we could also try computaitons on the original scale
pred.lta <- computeLTA(pred.cv.mesa, exp)
##compare observed and predicted averages
plot(pred.lta[,"obs"], pred.lta[,"EX.mu"], pch=1,
xlim=range(pred.lta), ylim=range(pred.lta),
xlab="obs", ylab="predictions")
points(pred.lta[,"obs"], pred.lta[,"EX.mu.beta"], pch=3, col=2)
points(pred.lta[,"obs"], pred.lta[,"EX"], pch=4, col=3)
abline(0,1)
|
Loading required package: Matrix
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.