Description Format Source References See Also Examples
The raw data that was used to create the mesa.model
structures.
The data structure contains raw data from the MESA Air project. The
example below describes how to create the mesa.model
structure
from raw data.
The structure contains observations, temporal trends, locations, geographic covariates, and spatio-temporal covariates. The data is stored as a list with elements:
A data.frame containing names, locations, and (geographic) covariates for all the (observation) locations.
A time-by-location matrix for the observed data, missing data
marked as NA
A time-by-location matrix of a spatio-temporal covariate based on output from Caline3QHC.
Contains monitoring data from the MESA Air project, see Cohen et.al. (2009) for details.
M. A. Cohen, S. D. Adar, R. W. Allen, E. Avol, C. L. Curl, T. Gould, D. Hardie, A. Ho, P. Kinney, T. V. Larson, P. D. Sampson, L. Sheppard, K. D. Stukovsky, S. S. Swan, L. S. Liu, J. D. Kaufman. (2009) Approach to Estimating Participant Pollutant Exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environmental Science & Technology: 43(13), 4687-4693.
createSTdata
for creation of STdata
objects.
Other data matrix: SVDmiss
,
SVDsmooth
, createDataMatrix
,
estimateBetaFields
Other example data: MCMC.mesa.model
,
est.cv.mesa
, est.mesa.model
,
mesa.model
, pred.mesa.model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | ##load the data
data(mesa.data.raw)
##extract matrix of observations (missing marked by NA)
obs.mat <- mesa.data.raw$obs
head(obs.mat)
##optionally observations can be given as a data.frame
obs <- data.frame(obs=c(obs.mat),
date=rep(rownames(obs.mat), dim(obs.mat)[2]),
ID=rep(colnames(obs.mat), each=dim(obs.mat)[1]))
##force date-format
obs$date <- as.Date(obs$date)
##drop unobserved
obs <- obs[!is.na(obs$obs),,drop=FALSE]
##create a 3D-array for the spatio-temporal covariate
ST <- array(mesa.data.raw$lax.conc.1500, dim =
c(dim(mesa.data.raw$lax.conc.1500),1))
dimnames(ST) <- list(rownames(mesa.data.raw$lax.conc),
colnames(mesa.data.raw$lax.conc),
"lax.conc.1500")
##or use a list of matrices
ST.list <- list(lax.conc.1500=mesa.data.raw$lax.conc.1500)
###########################
## create STdata object ##
###########################
##Create the data-object
mesa.data <- createSTdata(obs.mat, mesa.data.raw$X, n.basis=2,
SpatioTemporal=ST)
mesa.data.2 <- createSTdata(obs, mesa.data.raw$X, n.basis=2,
SpatioTemporal=ST.list)
##This should yield equal structures,
##which are also the same as data(mesa.data)
all.equal(mesa.data, mesa.data.2)
###########################
## create STmodel object ##
###########################
##define land-use covariates, for intercept and trends
LUR <- list(~log10.m.to.a1+s2000.pop.div.10000+km.to.coast,
~km.to.coast, ~km.to.coast)
##and covariance model
cov.beta <- list(covf="exp", nugget=FALSE)
cov.nu <- list(covf="exp", nugget=~type, random.effect=FALSE)
##which locations to use
locations <- list(coords=c("x","y"), long.lat=c("long","lat"), others="type")
##create object
mesa.model <- createSTmodel(mesa.data, LUR=LUR, ST="lax.conc.1500",
cov.beta=cov.beta, cov.nu=cov.nu,
locations=locations)
##This should be the same as the data in data(mesa.model)
|
Loading required package: Matrix
60370002 60370016 60370030 60370031 60370113 60371002 60371103
1999-01-13 4.577684 4.131632 NA NA 4.727882 5.352608 5.281452
1999-01-27 3.889091 3.543566 NA NA 4.139332 4.876832 4.846044
1999-02-10 4.013020 3.632424 NA NA 4.054051 4.717611 4.665429
1999-02-24 4.080691 3.842586 NA NA 4.392799 4.877139 4.830275
1999-03-10 3.728085 3.396944 NA NA 3.960577 4.252480 4.163820
1999-03-24 3.751913 3.626161 NA NA 3.958741 4.180627 4.240120
60371201 60371301 60371601 60371602 60371701 60372005 60374002
1999-01-13 4.984585 5.463134 5.316398 NA 5.081886 4.900640 4.995868
1999-01-27 4.100073 5.213077 5.010987 NA 4.674858 4.381561 4.785056
1999-02-10 4.056365 5.037477 4.770632 NA 4.715861 4.247208 4.493267
1999-02-24 4.382803 5.127157 4.960104 NA 4.905827 4.450186 4.440054
1999-03-10 3.808937 4.656825 4.205851 NA 4.403685 3.792204 4.035339
1999-03-24 3.794791 4.583794 4.383694 NA 4.472207 3.836844 3.995005
60375001 60375005 60590001 60590007 60591003 60595001 L001 L002
1999-01-13 5.165070 NA 4.847385 NA 4.603461 4.834629 NA NA
1999-01-27 4.784252 NA 4.517424 NA 4.414679 4.576023 NA NA
1999-02-10 4.685089 NA 4.217816 NA 4.104592 4.337169 NA NA
1999-02-24 4.676942 NA 4.565771 NA 4.288501 4.573462 NA NA
1999-03-10 4.030772 NA 3.816688 NA 3.374445 3.936019 NA NA
1999-03-24 4.200838 NA 3.795629 NA 3.412111 3.914319 NA NA
LC001 LC002 LC003
1999-01-13 NA NA NA
1999-01-27 NA NA NA
1999-02-10 NA NA NA
1999-02-24 NA NA NA
1999-03-10 NA NA NA
1999-03-24 NA NA NA
[1] TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.