Nothing
## ----include=FALSE------------------------------------------------------------
library(Spower)
set.seed(42)
formals(SpowerCurve)$plotly <- FALSE
## ----include=FALSE------------------------------------------------------------
eval <- as.logical(Sys.getenv("SPOWER_EVAL"))
if(is.na(eval)) eval <- FALSE # set to FALSE for normal run
store <- list()
if(!eval)
store <- readRDS(system.file("intro3.rds", package = 'Spower'))
## ----include=eval-------------------------------------------------------------
getwd()
## ----eval=eval----------------------------------------------------------------
# l_two.t_correct.sign <- function(n, mean, mu = 0, alpha = .05, ...){
# while(TRUE){
# g1 <- rnorm(n)
# g2 <- rnorm(n, mean=mean)
# out <- t.test(g2, g1, mu=mu, ...)
# if(out$p.value < alpha) break # if "significant" then break while() loop
# }
# mean_diff <- unname(out$estimate[1] - out$estimate[2])
# mean_diff > mu # return TRUE if the correct sign is observed
# }
## ----eval=eval----------------------------------------------------------------
# l_two.t_correct.sign(n=15, mean=.2) |> Spower()
## ----echo=FALSE---------------------------------------------------------------
if(eval) store$typeS <- getLastSpower()
typeS <- store$typeS
print(typeS)
## ----eval=eval----------------------------------------------------------------
# typeS <- .01
# l_two.t_correct.sign(n=NA, mean=.2) |>
# Spower(power=1-typeS, interval=c(10, 200))
## ----echo=FALSE---------------------------------------------------------------
if(eval) store$typeS.N <- getLastSpower()
typeS.N <- store$typeS.N
print(typeS.N)
## -----------------------------------------------------------------------------
l_two.t_correct.sign <- function(n, mean, mu = 0, alpha = .05, ...){
while(TRUE){
# return_analysis argument used to return model object
out <- p_t.test(n=n, d=mean, mu=mu, return_analysis=TRUE, ...)
if(out$p.value < alpha) break
}
mean_diff <- unname(out$estimate[1] - out$estimate[2])
mean_diff > mu
}
## -----------------------------------------------------------------------------
l_two.t_correct.sign(100, mean=.5)
## ----eval=eval----------------------------------------------------------------
# l_two.t_correct.sign(n=15, mean=.2) |> Spower()
## ----echo=FALSE---------------------------------------------------------------
if(eval) store$typeS2 <- getLastSpower()
typeS2 <- store$typeS2
print(typeS2)
## ----eval=eval----------------------------------------------------------------
# l_two.t_typeM <- function(n, mean, mu = 0,
# alpha = .05, M.ratio = 3, ...){
# while(TRUE){
# # return_analysis argument used to return model object
# out <- p_t.test(n=n, d=mean, mu=mu, return_analysis=TRUE, ...)
# if(out$p.value < alpha) break
# }
# diff <- unname(out$estimate[1] - out$estimate[2])
# M <- abs(diff)/mean
# # return data.frame, where "retain" indicates the (logical) power information
# data.frame(retain=M < M.ratio, M=M)
# }
## ----eval=eval----------------------------------------------------------------
# # only use the "retain" information to compute power, though store the rest
# l_two.t_typeM(n=50, mean=.2) |> Spower(select='retain') -> typeM
# typeM
## ----echo=FALSE---------------------------------------------------------------
if(eval) store$typeM <- getLastSpower()
typeM <- store$typeM
print(typeM)
## -----------------------------------------------------------------------------
results <- SimResults(typeM)
results
with(results, c(mean=mean(M), SD=sd(M), min=min(M), max=max(M)))
hist(results$M, 30)
## ----eval=eval----------------------------------------------------------------
# # double the total sample size
# l_two.t_typeM(n=100, mean=.2) |> Spower(select='retain') -> typeM2
# typeM2
## ----echo=FALSE---------------------------------------------------------------
if(eval) store$typeM2 <- getLastSpower()
typeM2 <- store$typeM2
print(typeM2)
## ----eval=FALSE---------------------------------------------------------------
# last <- getLastSpower()
# 1 - last$power
## ----echo=FALSE---------------------------------------------------------------
1 - typeM2$power
## -----------------------------------------------------------------------------
results <- SimResults(typeM2)
results
with(results, c(mean=mean(M), SD=sd(M), min=min(M), max=max(M)))
hist(results$M, 30)
## ----include=FALSE, eval=eval-------------------------------------------------
# saveRDS(store, '../inst/intro3.rds') # rebuild package when done
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.