Nothing
#' @title Example 3.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-77)
#' @name Exam3.3
#' @docType data
#' @keywords datasets
#' @description Exam3.3 use RCBD data with fixed location effect and different forms of estimable functions are shown in this example.
#' @author \enumerate{
#' \item Muhammad Yaseen (\email{myaseen208@@gmail.com})
#' \item Adeela Munawar (\email{adeela.uaf@@gmail.com})
#' }
#' @references \enumerate{
#' \item Stroup, W. W. (2012).
#' \emph{Generalized Linear Mixed Models: Modern Concepts, Methods and Applications}.
#' CRC Press.
#' }
#' @seealso
#' \code{\link{DataSet3.2}}
#'
#' @importFrom lsmeans lsmeans contrast
#' @importFrom phia testFactors
#' @importFrom stats glm summary.glm
#' @importFrom mutoss sidak
#'
#' @examples
#' #-----------------------------------------------------------------------------------
#' ## linear model for Gaussian data
#' #-----------------------------------------------------------------------------------
#' data(DataSet3.2)
#' DataSet3.2$trt <- factor(x = DataSet3.2$trt, level = c(3,0,1,2))
#' DataSet3.2$loc <- factor(x = DataSet3.2$loc, level = c(8, 1, 2, 3, 4, 5, 6, 7))
#' Exam3.3.lm1 <-
#' lm(
#' formula = Y~ trt+loc
#' , data = DataSet3.2
#' # , subset
#' # , weights
#' # , na.action
#' , method = "qr"
#' , model = TRUE
#' # , x = FALSE
#' # , y = FALSE
#' , qr = TRUE
#' , singular.ok = TRUE
#' , contrasts = NULL
#' # , offset
#' # , ...
#' )
#' summary( Exam3.3.lm1 )
#' #-------------------------------------------------------------
#' ## Individula least squares treatment means
#' #-------------------------------------------------------------
#' library(lsmeans)
#' (Lsm3.3 <-
#' lsmeans::lsmeans(
#' object = Exam3.3.lm1
#' , specs = "trt"
#' # , ...
#' )
#' )
#' #---------------------------------------------------
#' ## Pairwise treatment means estimate
#' #---------------------------------------------------
#' contrast( object = Lsm3.3 , method = "pairwise")
#' #---------------------------------------------------
#' ## Repairwise treatment means estimate
#' #---------------------------------------------------
#' ## contrast( object = Lsm3.3 , method = "repairwise")
#' #-------------------------------------------------------
#' ## LSM Trt0 (This term is used in Walter Stroups' book)
#' #-------------------------------------------------------
#' library(phia)
#' list3.3.1 <- list(trt=c("0" = 1 ) )
#' Test3.3.1 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.1)
#' )
#' #-------------------------------------------------------
#' ## LSM Trt0 alt(This term is used in Walter Stroups' book)
#' #-------------------------------------------------------
#' list3.3.2 <-
#' list(trt=c("0" = 1 )
#' , loc=c("1" = 0,"2" = 0,"3" = 0,"4" = 0,"5" = 0,"6" = 0,"7" = 0)
#' )
#' Test3.3.2 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.2)
#' )
#' #-------------------------------------------------------
#' ## Trt0 Vs Trt1
#' #-------------------------------------------------------
#' list3.3.3 <- list(trt=c("0" = 1,"1" = -1))
#' Test3.3.3 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.3)
#' )
#' #-------------------------------------------------------
#' ## average Trt0+1
#' #-------------------------------------------------------
#' list3.3.4 <- list(trt=c("0" = 0.5 , "1" = 0.5))
#' Test3.3.4 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.4)
#' )
#' #-------------------------------------------------------
#' ## average Trt0+2+3
#' #-------------------------------------------------------
#' list3.3.5 <- list(trt=c("0" = 0.33333,"2" = 0.33333,"3" = 0.33333))
#' Test3.3.5 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.5)
#' )
#' #-------------------------------------------------------
#' ## Trt 2 Vs 3 difference
#' #-------------------------------------------------------
#' list3.3.6 <- list(trt=c("2" = 1,"3" = -1))
#' Test3.3.6 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.6)
#' )
#' #-------------------------------------------------------
#' ## Trt 1 Vs 2 difference
#' #-------------------------------------------------------
#' list3.3.7 <- list(trt=c("1" = 1,"2" = -1))
#' Test3.3.7 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.7)
#' )
#' #-------------------------------------------------------
#' ## Trt 1 Vs 3 difference
#' #-------------------------------------------------------
#' list3.3.8 <- list(trt=c("1" = 1,"3" = -1))
#' Test3.3.8 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.8)
#' )
#' #-------------------------------------------------------
#' ## Average trt0+1 vs Average Trt2+3
#' #-------------------------------------------------------
#' list3.3.9 <- list(trt=c("0" = 0.5,"1" = 0.5,"2" = -0.5,"3" = -0.5))
#' Test3.3.9 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.9)
#' )
#' #-------------------------------------------------------
#' ## Trt1 vs Average Trt0+1+2
#' #-------------------------------------------------------
#' list3.3.10 <- list(trt=c("0" = 0.33333,"1" = -1,"2" = 0.33333,"3" = 0.33333))
#' Test3.3.10 <-
#' summary(testFactors(
#' model = Exam3.3.lm1
#' , levels = list3.3.10)
#' )
#' #-------------------------------------------------------
#' ## Sidak Multiplicity adjustment for p-values
#' #-------------------------------------------------------
#' library(mutoss)
#' PValues3.3 <-
#' c(
#' Test3.3.3[[7]][1, 4]
#' , Test3.3.6[[7]][1, 4]
#' , Test3.3.7[[7]][1, 4]
#' , Test3.3.8[[7]][1, 4]
#' , Test3.3.9[[7]][1, 4]
#' , Test3.3.10[[7]][1, 4]
#' )
#' AdjPValues3.3 <- sidak(PValues3.3)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.