| SL.glmnet | R Documentation | 
Penalized regression using elastic net. Alpha = 0 corresponds to ridge regression and alpha = 1 corresponds to Lasso.
See vignette("glmnet_beta", package = "glmnet") for a nice tutorial on
glmnet.
SL.glmnet(Y, X, newX, family, obsWeights, id, alpha = 1, nfolds = 10,
  nlambda = 100, useMin = TRUE, loss = "deviance", ...)
Y | 
 Outcome variable  | 
X | 
 Covariate dataframe  | 
newX | 
 Dataframe to predict the outcome  | 
family | 
 "gaussian" for regression, "binomial" for binary classification. Untested options: "multinomial" for multiple classification or "mgaussian" for multiple response, "poisson" for non-negative outcome with proportional mean and variance, "cox".  | 
obsWeights | 
 Optional observation-level weights  | 
id | 
 Optional id to group observations from the same unit (not used currently).  | 
alpha | 
 Elastic net mixing parameter, range [0, 1]. 0 = ridge regression and 1 = lasso.  | 
nfolds | 
 Number of folds for internal cross-validation to optimize lambda.  | 
nlambda | 
 Number of lambda values to check, recommended to be 100 or more.  | 
useMin | 
 If TRUE use lambda that minimizes risk, otherwise use 1 standard-error rule which chooses a higher penalty with performance within one standard error of the minimum (see Breiman et al. 1984 on CART for background).  | 
loss | 
 Loss function, can be "deviance", "mse", or "mae". If family = binomial can also be "auc" or "class" (misclassification error).  | 
... | 
 Any additional arguments are passed through to cv.glmnet.  | 
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267-288.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.
predict.SL.glmnet cv.glmnet
glmnet
# Load a test dataset.
data(PimaIndiansDiabetes2, package = "mlbench")
data = PimaIndiansDiabetes2
# Omit observations with missing data.
data = na.omit(data)
Y = as.numeric(data$diabetes == "pos")
X = subset(data, select = -diabetes)
set.seed(1, "L'Ecuyer-CMRG")
sl = SuperLearner(Y, X, family = binomial(),
                  SL.library = c("SL.mean", "SL.glm", "SL.glmnet"))
sl
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.