Nothing
# Effect sizes
# Changed conf.level to alpha_level
effect_size_d <- function(x, y, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
n1 <- length(x) #number of pairs
n2 <- length(y) #number of pairs
df <- n1 + n2 - 2
m_diff <- mean(y) - mean(x)
sd_pooled <- (sqrt((((n1 - 1) * ((sd1^2))) + (n2 - 1) * ((sd2^2))) / ((n1 + n2 - 2)))) #pooled standard deviation
j <- (1 - 3/(4 * (n1 + n2 - 2) - 1)) #Calculate Hedges' correction.
t_value <- m_diff / sqrt(sd_pooled^2 / n1 + sd_pooled^2 / n2)
p_value = 2*pt(-abs(t_value), df = df)
d <- m_diff / sd_pooled #Cohen's d
d_unb <- d*j #Hedges g, of unbiased d
invisible(list(d = d,
d_unb = d_unb,
p_value = p_value))
}
effect_size_d_paired <- function(x, y, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
s_diff <- sd(x - y) #standard deviation of the difference scores
N <- length(x) #number of pairs
df = N - 1
s_av <- sqrt((sd1 ^ 2 + sd2 ^ 2) / 2) #averaged standard deviation of both measurements
#Cohen's d_av, using s_av as standardizer
m_diff <- mean(y - x)
d_av <- m_diff / s_av
d_av_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_av
#get the t-value for the CI
t_value <- m_diff / (s_diff / sqrt(N))
p_value = 2 * pt(-abs(t_value), df = df)
#Cohen's d_z, using s_diff as standardizer
d_z <- t_value / sqrt(N)
d_z_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_z
invisible(list(
d_z = d_z,
d_z_unb = d_z_unb,
p_value = p_value
))
}
effect_size_d_exact <- function(x, y, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
n1 <- length(x) #number of pairs
n2 <- length(y) #number of pairs
df <- n1 + n2 - 2
m_diff <- mean(y) - mean(x)
sd_pooled <- (sqrt((((n1 - 1) * ((sd1^2))) + (n2 - 1) * ((sd2^2))) / ((n1 + n2 - 2)))) #pooled standard deviation
j <- (1 - 3/(4 * (n1 + n2 - 2) - 1)) #Calculate Hedges' correction.
t_value <- m_diff / sqrt(sd_pooled^2 / n1 + sd_pooled^2 / n2)
p_value = 2*pt(-abs(t_value), df = df)
#Calculate power
power = power.t.test(
n = n1,
delta = m_diff,
sd = sd_pooled,
type = "two.sample",
alternative = "two.sided",
strict = TRUE,
sig.level = alpha_level
)$power
d <- m_diff / sd_pooled #Cohen's d
d_unb <- d*j #Hedges g, of unbiased d
invisible(list(d = d,
d_unb = d_unb,
p_value = p_value,
power = power))
}
effect_size_d_paired_exact <- function(x, y, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
s_diff <- sd(x - y) #standard deviation of the difference scores
N <- length(x) #number of pairs
df = N - 1
s_av <- sqrt((sd1 ^ 2 + sd2 ^ 2) / 2) #averaged standard deviation of both measurements
#Cohen's d_av, using s_av as standardizer
m_diff <- mean(y - x)
d_av <- m_diff / s_av
d_av_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_av
#get the t-value for the CI
t_value <- m_diff / (s_diff / sqrt(N))
p_value = 2 * pt(-abs(t_value), df = df)
power = power.t.test(
n = N,
delta = m_diff,
sd = s_diff,
type = "paired",
alternative = "two.sided",
strict = TRUE,
sig.level = alpha_level
)$power
#Cohen's d_z, using s_diff as standardizer
d_z <- t_value / sqrt(N)
d_z_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_z
invisible(list(
d_z = d_z,
d_z_unb = d_z_unb,
p_value = p_value,
power = power
))
}
effect_size_d_exact2 <- function(x, y, sample_size, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
n1 <- sample_size
n2 <- sample_size
df <- n1 + n2 - 2
m_diff <- mean(y) - mean(x)
sd_pooled <- (sqrt((((n1 - 1) * ((sd1^2))) + (n2 - 1) * ((sd2^2))) / ((n1 + n2 - 2)))) #pooled standard deviation
j <- (1 - 3/(4 * (n1 + n2 - 2) - 1)) #Calculate Hedges' correction.
t_value <- m_diff / sqrt(sd_pooled^2 / n1 + sd_pooled^2 / n2)
p_value = 2*pt(-abs(t_value), df = df)
#Calculate power
power = power.t.test(
n = n1,
delta = m_diff,
sd = sd_pooled,
type = "two.sample",
alternative = "two.sided",
strict = TRUE,
sig.level = alpha_level
)$power
d <- m_diff / sd_pooled #Cohen's d
d_unb <- d*j #Hedges g, of unbiased d
invisible(list(d = d,
d_unb = d_unb,
p_value = p_value,
power = power))
}
effect_size_d_paired_exact2 <- function(x, y, sample_size, alpha_level){
sd1 <- sd(x) #standard deviation of measurement 1
sd2 <- sd(y) #standard deviation of measurement 2
s_diff <- sd(x - y) #standard deviation of the difference scores
N <- sample_size
df = N - 1
s_av <- sqrt((sd1 ^ 2 + sd2 ^ 2) / 2) #averaged standard deviation of both measurements
#Cohen's d_av, using s_av as standardizer
m_diff <- mean(y - x)
d_av <- m_diff / s_av
d_av_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_av
#get the t-value for the CI
t_value <- m_diff / (s_diff / sqrt(N))
p_value = 2 * pt(-abs(t_value), df = df)
power = power.t.test(
n = N,
delta = m_diff,
sd = s_diff,
type = "paired",
alternative = "two.sided",
strict = TRUE,
sig.level = alpha_level
)$power
#Cohen's d_z, using s_diff as standardizer
d_z <- t_value / sqrt(N)
d_z_unb <- (1 - (3 / (4 * (N - 1) - 1))) * d_z
invisible(list(
d_z = d_z,
d_z_unb = d_z_unb,
p_value = p_value,
power = power
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.