Nothing
##' Build a Survival Tree (Data Supplied as Matrices)
##'
##' @title Build a Survival Tree (Data Supplied as Matrices)
##' @description The function
##' \code{survival_tree_matrix} build a survival tree given the survival outcomes and predictors of numeric and factor variables.
##' @param time survival times, a numeric vector.
##' \code{time[i]} is the survival time of the ith sample.
##' @param event survival events, a logical vector.
##' \code{event[i]} is the survival event of the ith sample.
##' @param matrix_numeric numeric predictors, a numeric matrix.
##' \code{matrix_numeric[i,j]} is the jth numeric predictor of the ith sample.
##' @param matrix_factor factor predictors, a character matrix.
##' \code{matrix_factor[i,j]} is the jth predictor of the ith sample.
##' @param weights sample weights, a numeric vector.
##' \code{weights[i]} is the weight of the ith sample.
##' @param significance significance threshold, a numeric value.
##' Stop the splitting algorithm when no splits give a p-value smaller than \code{significance}.
##' @param min_weights minimum weight threshold, a numeric value.
##' The weights in a node are greater than \code{min_weights}.
##' @param missing a character value that specifies the handling of missing data.
##' If \code{missing=="omit"}, samples with missing values in the splitting variables will be discarded.
##' If \code{missing=="majority"}, samples with missing values in the splitting variables will be assigned to the majority node.
##' If \code{missing=="weighted"}, samples with missing values in the splitting variables will be weighted by the weights of branch nodes.
##' @param test_type a character value that specifies the type of statistical tests.
##' If \code{test_type=="univariate"}, then it performs a log-rank test without p-value adjustments.
##' If \code{test_type} is in \code{p.adjust.methods}, i.e., one of holm, hochberg, hommel, bonferroni, BH, BY, or fdr,
##' then the p-values will be adjusted using the corresponding method.
##' @param cut_type an integer value that specifies how to cut between two numeric values.
##' If \code{cut_type==0}, then cut at the ends.
##' If \code{cut_type==1}, then cut from the middle.
##' If \code{cut_type==2}, then cut randomly between the two values.
##' @return A list containing the information of the survival tree fit.
##' @example
##' library(survival)
##' a_survival_tree<-
##' survival_tree_matrix(
##' time=lung$time,
##' event=lung$status==2,
##' matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
##' matrix_factor=data.matrix(lung[,5,drop=FALSE]))
survival_tree_matrix<-function(
time,
event,
matrix_numeric,
matrix_factor,
weights=rep(1,length(time)),
significance=0.05,
min_weights=50,
missing="omit",
test_type="univariate",
cut_type=0){
# check [missing], [test_type]
if(!missing%in%c("majority","omit","weighted"))stop("Invalid 'missing' argument.")
if(!test_type%in%c("univariate",p.adjust.methods))stop("Invalid 'test_type' argument.")
event<-as.logical(event)
matrix_numeric<-as.matrix(matrix_numeric)
matrix_factor<-as.matrix(matrix_factor)
matrix_factor<-apply(matrix_factor,c(1,2),as.character)
ndim_numeric<-ncol(matrix_numeric)
ndim_factor<-ncol(matrix_factor)
nind<-length(time)
if(!is.numeric(time))stop("Invalid 'time' argument")
if(!is.logical(event))stop("Invalid 'event' argument")
if(!is.numeric(matrix_numeric))stop("Invalid 'matrix_numeric' formula")
if(!is.character(matrix_factor))stop("Invalid 'matrix_factor' formula")
if(ndim_numeric+ndim_factor<1)stop("There are no predictors in the model.")
# check dimensions
if(nrow(matrix_numeric)!=nind)stop("Dimension mismatch between 'matrix_numeric' and 'time'.")
if(nrow(matrix_factor)!=nind)stop("Dimension mismatch between 'matrix_factor' and 'time'.")
if(any(is.na(time))|any(is.na(event)))stop("Missing values in 'time' or 'event'.")
# creat names
if(is.null(colnames(matrix_numeric))&ndim_numeric>=1)colnames(matrix_numeric)<-paste0("numeric",1:ncol(matrix_numeric),sep="")
if(is.null(colnames(matrix_factor))&ndim_factor>=1)colnames(matrix_factor)<-paste0("factor",1:ncol(matrix_factor),sep="")
variable_names<-c(colnames(matrix_numeric),colnames(matrix_factor))
# convert matrix_factor to an integer matrix
factor_dictionary<-list()
matrix_factor_int<-matrix(NA,nind,ndim_factor)
if(ncol(matrix_factor)>0){
colnames(matrix_factor_int)<-colnames(matrix_factor)
for(idx in 1:ncol(matrix_factor)){
aname<-colnames(matrix_factor)[idx]
a_dictionary<-create_dictionary(matrix_factor[,idx])
factor_dictionary[[aname]]<-a_dictionary
matrix_factor_int[,idx]<-a_dictionary[matrix_factor[,aname]]
}
}
matrix_factor<-matrix_factor_int
# run
a_survival_tree<-grow_tree(
time=time,
event=event,
weights=weights,
xx_numeric=matrix_numeric,
xx_factor=matrix_factor,
significance=significance,
min_weights=min_weights,
missing=missing,
test_type=test_type,
cut_type=cut_type)
return(list(
variable_names=variable_names,
ndim_numeric=ndim_numeric,
ndim_factor=ndim_factor,
factor_dictionary=factor_dictionary,
survival_tree=a_survival_tree))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.