computeAlgebraicFunctions | R Documentation |
For a given persistence diagram D=\{(b_i,d_i)\}_{i=1}^N
(corresponding to a specified homological dimension), computeAlgebraicFunctions()
computes the following four algebraic functions based on the birth and death values:
f_1=\sum_i b_i (d_i - b_i).
f_2=\sum_i (d_{\max} - d_i) (d_i - b_i)
, where d_{\max} = \max(d_i)
.
f_3=\sum_i b_i^2 (d_i - b_i)^4
.
f_4=\sum_i (d_{\max} - d_i)^2 (d_i - b_i)^4
.
Points in D
with infinite death values are ignored.
computeAlgebraicFunctions(D, homDim)
D |
a persistence diagram: a matrix with three columns containing the homological dimension, birth and death values respectively. |
homDim |
the homological dimension (0 for |
The function extracts rows from D
where the first column equals homDim
, and computes the four algebraic functions based on the filtered data. If D
does not contain any points corresponding to homDim
, a vector of zeros is returned.
A (named) numeric vector (f_1,f_2,f_3,f_4)
.
Umar Islambekov
1. Adcock, A., Carlsson, E. and Carlsson, G., 2013. The ring of algebraic functions on persistence bar codes. Homology, Homotopy Appl., 18:381–402, 2016.
2. Ali, D., Asaad, A., Jimenez, M.J., Nanda, V., Paluzo-Hidalgo, E. and Soriano-Trigueros, M., (2023). A survey of vectorization methods in topological data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence.
N <- 100 # The number of points to sample
set.seed(123) # Set a random seed for reproducibility
# Sample N points uniformly from the unit circle and add Gaussian noise
theta <- runif(N, min = 0, max = 2 * pi)
X <- cbind(cos(theta), sin(theta)) + rnorm(2 * N, mean = 0, sd = 0.2)
# Compute the persistence diagram using the Rips filtration built on top of X
# The 'threshold' parameter specifies the maximum distance for building simplices
D <- TDAstats::calculate_homology(X, threshold = 2)
# Compute algebraic functions for homological dimension H_0
computeAlgebraicFunctions(D, homDim = 0)
# Compute algebraic functions for homological dimension H_1
computeAlgebraicFunctions(D, homDim = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.