computePersistentEntropy | R Documentation |
For a given persistence diagram D={(b_i,d_i)}_{i=1}^N
(corresponding to a specified homological dimension), computePersistentEntropy()
vectorizes the persistent entropy summary function
S(t)=-\sum_{i=1}^N \frac{l_i}{L}\log_2{(\frac{l_i}{L}})\bold 1_{[b_i,d_i]}(t),
where l_i=d_i-b_i
and L=\sum_{i=1}^Nl_i
, based on a scale sequence scaleSeq
. If N=1
, L
is set to 1. The evaluation method depends on the argument evaluate
. Points in D
with infinite death values are ignored.
computePersistentEntropy(D, homDim, scaleSeq, evaluate = "intervals")
D |
a persistence diagram: a matrix with three columns containing the homological dimension, birth and death values respectively. |
homDim |
the homological dimension (0 for |
scaleSeq |
a numeric vector of increasing scale values used for vectorization. |
evaluate |
a character string indicating the evaluation method. Must be either |
The function extracts rows from D
where the first column equals homDim
, and computes values based on the filtered data and scaleSeq
. If D
does not contain any points corresponding to homDim
, a vector of zeros is returned.
A numeric vector containing elements computed using scaleSeq
=\{t_1,t_2,\ldots,t_n\}
according to the method specified by evaluate
.
"intervals"
: Computes average values of the persistent entropy summary function over intervals defined by consecutive elements in scaleSeq
:
\Big(\frac{1}{\Delta t_1}\int_{t_1}^{t_2}S(t)dt,\frac{1}{\Delta t_2}\int_{t_2}^{t_3}S(t)dt,\ldots,\frac{1}{\Delta t_{n-1}}\int_{t_{n-1}}^{t_n}S(t)dt\Big)\in\mathbb{R}^{n-1},
where \Delta t_k=t_{k+1}-t_k
.
"points"
: Computes values of the persistent entropy summary function at each point in scaleSeq
:
(S(t_1),S(t_2),\ldots,S(t_n))\in\mathbb{R}^n.
Umar Islambekov
1. Atienza, N., Gonzalez-Díaz, R., & Soriano-Trigueros, M. (2020). On the stability of persistent entropy and new summary functions for topological data analysis. Pattern Recognition, 107, 107509.
N <- 100 # The number of points to sample
set.seed(123) # Set a random seed for reproducibility
# Sample N points uniformly from the unit circle and add Gaussian noise
theta <- runif(N, min = 0, max = 2 * pi)
X <- cbind(cos(theta), sin(theta)) + rnorm(2 * N, mean = 0, sd = 0.2)
# Compute the persistence diagram using the Rips filtration built on top of X
# The 'threshold' parameter specifies the maximum distance for building simplices
D <- TDAstats::calculate_homology(X, threshold = 2)
scaleSeq = seq(0, 2, length.out = 11) # A sequence of scale values
# Compute a vector summary of the persistent entropy summary function for homological dimension H_0
computePersistentEntropy(D, homDim = 0, scaleSeq)
# Compute a vector summary of the persistent entropy summary function for homological dimension H_1
computePersistentEntropy(D, homDim = 1, scaleSeq)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.