computePersistenceSilhouette | R Documentation |
For a given persistence diagram D=\{(b_i,d_i)\}_{i=1}^N
(corresponding to a specified homological dimension), computePersistenceSilhouette()
vectorizes the p
th power persistence silhouette function
\phi_p(t) = \frac{\sum_{i=1}^N |d_i-b_i|^p\Lambda_i(t)}{\sum_{i=1}^N |d_i-b_i|^p},
where
\Lambda_i(t) = \left\{
\begin{array}{ll}
t-b_i & \quad t\in [b_i,\frac{b_i+d_i}{2}] \\
d_i-t & \quad t\in (\frac{b_i+d_i}{2},d_i]\\
0 & \quad \hbox{otherwise}
\end{array}
\right.
based on a scale sequence scaleSeq
. The evaluation method depends on the argument evaluate
. Points in D
with infinite death values are ignored.
computePersistenceSilhouette(D, homDim, scaleSeq, p = 1.0, evaluate = "intervals")
D |
a persistence diagram: a matrix with three columns containing the homological dimension, birth and death values respectively. |
homDim |
the homological dimension (0 for |
scaleSeq |
a numeric vector of increasing scale values used for vectorization. |
p |
power of the weights for the silhouette function. By default, |
evaluate |
a character string indicating the evaluation method. Must be either |
The function extracts rows from D
where the first column equals homDim
, and computes values based on the filtered data and scaleSeq
. If D
does not contain any points corresponding to homDim
, a vector of zeros is returned.
A numeric vector containing elements computed using scaleSeq
=\{t_1,t_2,\ldots,t_n\}
according to the method specified by evaluate
.
"intervals"
: Computes average values of the persistence silhouette function over intervals defined by consecutive elements in scaleSeq
:
\Big(\frac{1}{\Delta t_1}\int_{t_1}^{t_2}\phi_p(t)dt,\frac{1}{\Delta t_2}\int_{t_2}^{t_3}\phi_p(t)dt,\ldots,\frac{1}{\Delta t_{n-1}}\int_{t_{n-1}}^{t_n}\phi_p(t)dt\Big)\in\mathbb{R}^{n-1},
where \Delta t_k=t_{k+1}-t_k
.
"points"
: Computes values of the persistence silhouette function at each point in scaleSeq
:
(\phi_p(t_1),\phi_p(t_2),\ldots,\phi_p(t_n))\in\mathbb{R}^n.
Umar Islambekov
1. Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014). Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry (pp. 474-483).
N <- 100 # The number of points to sample
set.seed(123) # Set a random seed for reproducibility
# Sample N points uniformly from the unit circle and add Gaussian noise
theta <- runif(N, min = 0, max = 2 * pi)
X <- cbind(cos(theta), sin(theta)) + rnorm(2 * N, mean = 0, sd = 0.2)
# Compute the persistence diagram using the Rips filtration built on top of X
# The 'threshold' parameter specifies the maximum distance for building simplices
D <- TDAstats::calculate_homology(X, threshold = 2)
scaleSeq = seq(0, 2, length.out = 11) # A sequence of scale values
# Compute a vector summary of the persistence silhouette (with p=1) for homological dimension H_0
computePersistenceSilhouette(D, homDim = 0, scaleSeq)
# Compute a vector summary of the persistence silhouette (with p=1) for homological dimension H_1
computePersistenceSilhouette(D, homDim = 1, scaleSeq)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.