computePersistenceLandscape | R Documentation |
For a given persistence diagram D=\{(b_i,d_i)\}_{i=1}^N
(corresponding to a specified homological dimension), computePersistenceLandscape()
vectorizes the first k
persistence landscape functions
\lambda_j(t) = j\hbox{max}_{1\leq i \leq N} \Lambda_i(t), \quad j=1,\dots,k,
where j\hbox{max}
returns the j
th largest value and
\Lambda_i(t) = \left\{
\begin{array}{ll}
t-b_i & \quad t\in [b_i,\frac{b_i+d_i}{2}] \\
d_i-t & \quad t\in (\frac{b_i+d_i}{2},d_i]\\
0 & \quad \hbox{otherwise}
\end{array}
\right.
based on a scale sequence scaleSeq
. For generalized persistence landscape functions, we instead take
\Lambda_i(t) = \left\{
\begin{array}{ll}
\frac{d_i-b_i}{2K_h(0)}K_h(t-\frac{b_i+d_i}{2}) & \hbox{for } |\frac{t-\frac{b_i+d_i}{2}}{h}| \leq 1 \\
0 & \hbox{otherwise}
\end{array}
\right.
where K_h(\cdot)
is a kernel function with the bandwidth parameter h.
computePersistenceLandscape(D, homDim, scaleSeq, k = 1, generalized = FALSE,
kernel = "triangle", h = NULL)
D |
a persistence diagram: a matrix with three columns containing the homological dimension, birth and death values respectively. |
homDim |
the homological dimension (0 for |
scaleSeq |
a numeric vector of increasing scale values used for vectorization. |
k |
an integer specifying the number of persistence landscape functions to consider (default is 1). |
generalized |
a logical value indicating whether to use a generalized persistence landscape or not. Default is FALSE. |
kernel |
a string specifying the kernel type to use if |
h |
a positive numeric value specifying the bandwidth for the kernel. Must be provided if |
The function extracts rows from D
where the first column equals homDim
, and computes values based on the filtered data and scaleSeq
. If D
does not contain any points corresponding to homDim
, a vector of zeros is returned. If generalized = TRUE
, three different kernel functions are currently supported:
Triangle kernel: K_h(t) = \frac{1}{h} \max(0, 1 - \frac{|t|}{h})
Epanechnikov kernel: K_h(t) = \frac{3}{4h} \max(0, 1 - \frac{t^2}{h^2})
Tricubic kernel: K_h(t) = \frac{70}{81h} \max(0, (1 - \frac{|t|^3}{h^3})^3)
A matrix where the j
th column contains the values of the j
th order persistence landscape function evaluated at each point of scaleSeq
=\{t_1,t_2,\ldots,t_n\}
:
\begin{bmatrix}
\lambda_1(t_1) & \lambda_2(t_1) & \cdots & \lambda_k(t_1) \\
\lambda_1(t_2) & \lambda_2(t_2) & \cdots & \lambda_k(t_2)\\
\vdots & \vdots& \ddots & \vdots \\
\lambda_1(t_n) & \lambda_2(t_n) & \cdots & \lambda_k(t_n)
\end{bmatrix}
Umar Islambekov
1. Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(1), 77-102.
2. Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014, June). Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry (pp. 474-483).
3. Berry, E., Chen, Y. C., Cisewski-Kehe, J., & Fasy, B. T. (2020). Functional summaries of persistence diagrams. Journal of Applied and Computational Topology, 4(2):211–262.
N <- 100 # The number of points to sample
set.seed(123) # Set a random seed for reproducibility
# Sample N points uniformly from the unit circle and add Gaussian noise
theta <- runif(N, min = 0, max = 2 * pi)
X <- cbind(cos(theta), sin(theta)) + rnorm(2 * N, mean = 0, sd = 0.2)
# Compute the persistence diagram using the Rips filtration built on top of X
# The 'threshold' parameter specifies the maximum distance for building simplices
D <- TDAstats::calculate_homology(X, threshold = 2)
scaleSeq = seq(0, 2, length.out = 11) # A sequence of scale values
# Compute vector summaries of the first three persistence landscape functions
# for homological dimension H_1
computePersistenceLandscape(D, homDim = 1, scaleSeq, k = 3)
# Compute vector summaries of the first three generalized persistence
# landscape functions (with triangle kernel and bandwidth h=0.2)
# for homological dimension H_1
computePersistenceLandscape(D, homDim = 1, scaleSeq, generalized = TRUE, k = 3, h = 0.2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.