Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, message = TRUE, warning = FALSE,
fig.width = 8, fig.height = 8)
# Packages --------------------------------------------------------------------
suppressPackageStartupMessages({
suppressWarnings({
library(TDLM)
library(sf)
})
})
options(tinytex.verbose = TRUE)
## -----------------------------------------------------------------------------
data(od)
od[1:5, 1:5]
dim(od)
## -----------------------------------------------------------------------------
data(distance)
distance[1:5, 1:5]
dim(distance)
## -----------------------------------------------------------------------------
data(mass)
mass[1:10,]
dim(mass)
mi <- as.numeric(mass[,1])
names(mi) <- rownames(mass)
mj <- mi
Oi <- as.numeric(mass[,2])
names(Oi) <- rownames(mass)
Dj <- as.numeric(mass[,3])
names(Dj) <- rownames(mass)
## -----------------------------------------------------------------------------
check_format_names(vectors = list(mi = mi, mj = mj, Oi = Oi, Dj = Dj),
matrices = list(od = od, distance = distance),
check = "format_and_names")
## -----------------------------------------------------------------------------
library(sf)
data(county)
county[1:10,]
plot(county)
## -----------------------------------------------------------------------------
coords[1:10,]
coords_xy[1:10,]
## -----------------------------------------------------------------------------
haversine_d <- extract_distances(coords = coords,
method = "Haversine")
haversine_d[1:5, 1:5]
distance[1:5, 1:5]
## -----------------------------------------------------------------------------
xy_d <- extract_distances(coords = coords_xy,
method = "Euclidean")
oldmar <- par()$mar
par(mar = c(4.5, 6, 1, 1))
plot(haversine_d, xy_d, xlim=c(0,900), ylim=c(0,900),
type="p", pch=16, cex=2, lty=1, lwd=3,
col="steelblue3", axes=FALSE, xlab="", ylab="")
axis(1, cex.axis=1.2)
axis(2, cex.axis=1.2, las=1)
mtext("Haversine (km)", 1, line = 3.25, cex = 1.75)
mtext("Euclidean (km)", 2, line = 4, cex = 1.75)
box(lwd=1.5)
par(mar = oldmar)
## -----------------------------------------------------------------------------
sij <- extract_opportunities(opportunity = mi,
distance = distance,
check_names = TRUE)
sij[1:5, 1:5]
## -----------------------------------------------------------------------------
spi <- extract_spatial_information(county, id = "ID")
sp_d <- spi$distance
sp_d[1:5, 1:5]
distance[1:5, 1:5]
## -----------------------------------------------------------------------------
mean(spi$surface)
## -----------------------------------------------------------------------------
res <- run_law_model(law = "NGravExp",
mass_origin = mi,
mass_destination = mj,
distance = distance,
opportunity = NULL,
param = 0.01,
write_proba = TRUE,
model = "DCM",
nb_trips = NULL,
out_trips = Oi,
in_trips = Dj,
average = FALSE,
nbrep = 3)
## -----------------------------------------------------------------------------
print(res)
str(res)
## -----------------------------------------------------------------------------
res <- run_law_model(law = "NGravExp",
mass_origin = mi,
mass_destination = mj,
distance = distance,
opportunity = NULL,
param = c(0.01,0.02),
write_proba = TRUE,
model = "DCM",
nb_trips = NULL,
out_trips = Oi,
in_trips = Dj,
average = FALSE,
nbrep = 3)
## -----------------------------------------------------------------------------
print(res)
str(res)
## -----------------------------------------------------------------------------
res <- run_law_model(law = "Rad",
mass_origin = mi,
mass_destination = mj,
distance = NULL,
opportunity = sij,
param = NULL,
write_proba = TRUE,
model = "DCM",
nb_trips = NULL,
out_trips = Oi,
in_trips = Dj,
average = FALSE,
nbrep = 3)
print(res)
## -----------------------------------------------------------------------------
res$replication_1[1:10,1:10]
res <- run_law_model(law = "Rad",
mass_origin = mi,
mass_destination = mj,
distance = NULL,
opportunity = sij,
param = NULL,
write_proba = TRUE,
model = "DCM",
nb_trips = NULL,
out_trips = Oi,
in_trips = Dj,
average = TRUE,
nbrep = 3)
print(res)
res$replication_1[1:10,1:10]
## -----------------------------------------------------------------------------
print(calib_param(av_surf = mean(spi$surface), law = "NGravExp"))
## -----------------------------------------------------------------------------
res <- run_law_model(law = "NGravExp",
mass_origin = mi,
mass_destination = mj,
distance = distance,
opportunity = NULL,
param = seq(0.05,0.1,0.005),
write_proba = TRUE,
model = "DCM",
nb_trips = NULL,
out_trips = Oi,
in_trips = Dj,
average = FALSE,
nbrep = 3)
calib <- gof(sim = res, obs = od, measures = "all", distance = distance)
print(calib)
## -----------------------------------------------------------------------------
cpc <- aggregate(calib$CPC, list(calib$Parameter_value), mean)[,2]
oldmar <- par()$mar
par(mar = c(4.5, 6, 1, 1))
plot(seq(0.05,0.1,0.005), cpc, type="b", pch=16, cex=2, lty=1, lwd=3,
col="steelblue3", axes=FALSE, xlab="", ylab="")
axis(1, cex.axis=1.2)
axis(2, cex.axis=1.2, las=1)
mtext("Parameter value", 1, line = 3.25, cex = 1.75)
mtext("Common Part of Commuters", 2, line = 4, cex = 1.75)
box(lwd=1.5)
par(mar = oldmar)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.