Nothing
#' Tropical cluster betweeness measure for each cluster in a set of hierarchical
#' clusters
#'
#' This function calculates an overall betweenness measure based on tropical
#' distance between a set of clusters derived from tropical hierarchical
#' clustering
#' @param A matrix of tropical points; rows are points with the last column
#' representing a numbered cluster assignment
#' @param V list of clusters defined as matrices derived from agglomerative or
#' divisive hierarchical clustering
#' @return vector of betweenness cluster measures
#' @references David Barnhill, Ruriko Yoshida (2023). Clustering Methods Over
#' the Tropically Convex Sets.
#' @author David Barnhill \email{david.barnhill@@nps.edu}
#' @export
#' @examples
#' har<-rbind(Sim_points[1:20,],Sim_points[51:70,])
#'
#' V<-Tropical.HC.AGNES(har, method=mean)
#' inds<-V[[2]][[38]]
#' over_bet_HC(har,inds)
over_bet_HC<-function(A,V){
bets<-c()
for (i in 1:length(V)){
bet<-c()
for(j in 1:length(V)){
if(i!=j){
bet1<-mean(c(trop_bet_dist(A[V[[i]],],A[V[[j]],]),trop_bet_dist(A[V[[j]],],A[V[[i]],])))
bet<-append(bet,bet1)
}
}
mbet<-mean(bet)
bets<-append(bets,mbet)
}
return(bets)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.