Nothing
#' Tropical cluster betweeness measure for a each of a set of k-means derived
#' set of clusters
#'
#' This function calculates an overall betweenness measure between a set of
#' clusters derived from tropical k-means clustering
#' @param A matrix of tropical points; rows are points with the last column
#' representing a numbered cluster assignment
#' @param C number of clusters
#' @return betweenness cluster measure
#' @references David Barnhill, Ruriko Yoshida (2023). Clustering Methods Over
#' the Tropically Convex Sets.
#' @author David Barnhill \email{david.barnhill@@nps.edu}
#' @export
#' @examples
#'
#' hars<-Sim_points
#' cls<-c(rep(1,50),rep(2,50),rep(3,50))
#' cl_pt<-cbind(hars,cls)
#'
#' C<-3
#' over_bet_KM(cl_pt,C)
over_bet_KM<-function(A,C){
bets<-c()
for (i in 1:C){
bet<-c()
for(j in 1:C){
if(i!=j){
bet1<-mean(c(trop_bet_dist(A[which(A[,ncol(A)]==i),1:(ncol(A)-1)],A[which(A[,ncol(A)]==j),1:(ncol(A)-1)]),trop_bet_dist(A[which(A[,4]==j),1:(ncol(A)-1)],A[which(A[,4]==i),1:(ncol(A)-1)])))
bet<-append(bet,bet1)
}
}
mbet<-mean(bet)
bets<-append(bets,mbet)
}
return(bets)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.