diss.PER | R Documentation |
Computes the distance between two time series based on their periodograms.
diss.PER(x, y, logarithm=FALSE, normalize=FALSE)
x |
Numeric vector containing the first of the two time series. |
y |
Numeric vector containing the second of the two time series. |
logarithm |
Boolean. If |
normalize |
Boolean. If |
Computes the Euclidean distance between the periodogram coefficients of the series x
and y
. Additional transformations can be performed on the coefficients depending on the values of logarithm
and normalize
.
The computed distance.
Pablo Montero Manso, José Antonio Vilar.
Caiado, J., Crato, N. and Peña, D. (2006) A periodogram-based metric for time series classification. Comput. Statist. Data Anal., 50(10), 2668–2684.
Montero, P and Vilar, J.A. (2014) TSclust: An R Package for Time Series Clustering. Journal of Statistical Software, 62(1), 1-43. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.18637/jss.v062.i01")}
link{diss.INT.PER}
## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
diss.PER(x, y)
diss.PER(x, z)
diss.PER(y, z)
diss.PER(x, y, TRUE, TRUE)
diss.PER(x, z, TRUE, TRUE)
diss.PER(y, z, TRUE, TRUE)
#create a dist object for its use with clustering functions like pam or hclust
diss( rbind(x,y,z), "PER", logarithm=TRUE, normalize=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.