Nothing
##### ML#####
.asymptoticVarianceEstimML_CGMY <- function(data, EstimObj,
type = "TSS", ...) {
asymptoticVarianceEstimML_CGMY(thetaEst = EstimObj$Estim$par,
n_sample = length(data), type = type, ...)
}
asymptoticVarianceEstimML_CGMY <- function(thetaEst, n_sample,
type = "TSS", subdivisions = 100, ...) {
NameParamsObjectsTemp(invFisherMatrix_CGMY(as.numeric(thetaEst),
subdivisions)/n_sample,
type = type)
}
invFisherMatrix_CGMY <- function(theta, subdivisions = 100) {
mat <- matrix(NA, 4, 4)
integrand <- function(x, i, j) {
invf <- 1/VectorialDensity_CGMY(theta, x)
df <- jacVectorialDensity_CGMY(theta, x)
y <- invf * df[, i] * df[, j]
}
for (i in 1:4) {
for (j in 1:i) {
mat[i, j] <- stats::integrate(f = integrand, lower = -Inf, upper = Inf,
i = i, j = j,
subdivisions = subdivisions)$value
mat[j, i] <- mat[i, j]
}
}
solve(mat)
}
VectorialDensity_CGMY <- function(theta, xi) {
dCGMY(xi, theta[1], theta[2], theta[3], theta[4])
}
jacVectorialDensity_CGMY <- function(theta, xi) {
NumDeriv_jacobian_CGMY(fctToDeriv = VectorialDensity_CGMY,
WhereFctIsEvaluated = theta, xi = xi)
}
NumDeriv_jacobian_CGMY <- function(fctToDeriv, WhereFctIsEvaluated, ...) {
numDeriv::jacobian(fctToDeriv, WhereFctIsEvaluated, method = "Richardson",
method.args = list(), ...)
}
##### GMM#####
.asymptoticVarianceEstimGMM_CGMY <- function(data, EstimObj,
type = "TSS", eps, ...) {
V <- solve(GMMasymptoticVarianceEstim_CGMY(theta = EstimObj$Estim$par,
t = EstimObj$tEstim,
x = data, eps = eps, ...))/
length(data)
NameParamsObjects(V, type = type)
}
##### CGMM#####
.asymptoticVarianceEstimCgmm_CGMY <- function(data, EstimObj,
type = "TSS", ...) {
V <- ComputeCovarianceCgmm_CGMY(theta = EstimObj$Estim$par,
thetaHat = EstimObj$Estim$par,
x = data, ...)
NameParamsObjects(Mod(ComputeCutOffInverse(V))/length(data), type = type)
}
ComputeCovarianceCgmm_CGMY <- function(theta, Cmat = NULL, x, alphaReg,
thetaHat, s_min, s_max,
subdivisions = 50,
IntegrationMethod = c("Uniform",
"Simpson"),
randomIntegrationLaw = c("norm", "unif"),
...) {
n <- length(x)
IntegrationMethod <- match.arg(IntegrationMethod)
randomIntegrationLaw <- match.arg(randomIntegrationLaw)
CovMat <- ComputeCgmmFcts_CGMY(Fct = "Covariance", theta = theta,
Cmat = Cmat, x = x, Weighting = "optimal",
alphaReg = alphaReg, thetaHat = thetaHat,
s_min = s_min, s_max = s_max,
subdivisions = subdivisions,
IntegrationMethod = IntegrationMethod,
randomIntegrationLaw = randomIntegrationLaw,
...)
CovMat/(n - 4)
}
##### GMC#####
.asymptoticVarianceEstimGMC_CGMY <- function(data, EstimObj,
type = "TSS", eps, ...) {
V <- solve(GMCasymptoticVarianceEstim_CGMY(theta = EstimObj$Estim$par,
ncond = EstimObj$ncond, x = data,
eps = eps, ...))/length(data)
NameParamsObjects(V, type = type)
}
GMCasymptoticVarianceEstim_CGMY <- function(..., theta, x, ncond,
WeightingMatrix, alphaReg = 0.01,
regularization = "Tikhonov", eps) {
K <- ComputeGMCWeightingMatrix_CGMY(theta = theta, x = x, ncond = ncond,
WeightingMatrix = WeightingMatrix, ...)
B <- jacobianSampleRealCFMoment_CGMY(t, theta)
fct <- function(G) ComputeInvKbyG_CGMY(K = K, G = G, alphaReg = alphaReg,
regularization = regularization,
eps = eps)
invKcrossB <- apply(X = B, MARGIN = 2, FUN = fct)
crossprod(B, invKcrossB)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.