Nothing
#' QR decomposition of a 3D tensor using the discrete wavelet transform
#' @param tnsr, a 3-mode S3 tensor class object
#' @return Q, The left singular value S3 tensor class object (\eqn{n \times n \times k})
#' @return R, The right singular value Se tensor class object (\eqn{n \times n \times k})
#' @examples
#' T <- t_rand(modes=c(2,2,4))
#' tQRdwt(T)
#' @author Kyle Caudle
#' @author Randy Hoover
#' @author Jackson Cates
#' @author Everett Sandbo
#' @references M. E. Kilmer, C. D. Martin, and L. Perrone, “A third-order generalization of the matrix svd as a product of third-order tensors,” Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008
#'
#' K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.
tQRdwt <- function (tnsr)
{
# Performs a tensor QR decomposition on any 3-mode tensor
# using the discrete wavelet transform.
# Input: A, 3-mode tensor
# Output: Tensors Q and R so that A=QR.
modes <- tnsr$modes
n1 <- modes[1]
n2 <- modes[2]
n3 <- modes[3]
if (sum(as.numeric(intToBits(n3))) != 1)
stop("Mode 3 must be a power of 2 otherwise using 0 padding")
dwtz <- tDWT(tnsr)
Q_arr <- array(0, dim = c(n1, n2, n3))
R_arr <- array(0, dim = c(n1, n2, n3))
for (j in 1:n3) {
decomp <- qr(dwtz$data[, , j], nu = n1, nv = n2)
Q_arr[, , j] <- qr.Q(decomp)
R_arr[, , j] <- qr.R(decomp)
}
# Inverse DWT
Q <- tIDWT(as.Tensor(Q_arr))
R <- tIDWT(as.Tensor(R_arr))
invisible(list(Q = Q, R = R))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.