Description Usage Arguments Value Note Author(s) References See Also Examples
Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.
1 2 | bootstrapT3(X, A, B, C, G, n, m, p, r1, r2, r3, conv, centopt, normopt,
optimalmatch, laba, labb, labc)
|
X |
Matrix (or data.frame coerced to a matrix) of order ( |
A |
Component matrix for the |
B |
Component matrix for the |
C |
Component matrix for the |
G |
Matricized core array (frontal slices) |
n |
Number of |
m |
Number of |
p |
Number of |
r1 |
Number of extracted components for the |
r2 |
Number of extracted components for the |
r3 |
Number of extracted components for the |
conv |
Convergence criterion |
centopt |
Centering option (see |
normopt |
Normalization option (see |
optimalmatch |
Binary indicator (0 if the procedure uses matching via orthogonal rotation towards full solutions, 1 if the procedure uses matching via optimal transformation towards full solutions) |
laba |
Optional vector of length |
labb |
Optional vector of length |
labc |
Optional vector of length |
A list including the following components:
Bint |
Bootstrap percentile interval of every element of |
Cint |
Bootstrap percentile interval of every element of |
Gint |
Bootstrap percentile interval of matricized core array (frontal slices) |
fpint |
Bootstrap percentile interval for the goodness of fit index expressed as a percentage |
The preprocessing must be done in same way as for sample analysis.
The resampling mode must be the A
-mode.
The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.
Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it
H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. Journal of Chemometrics 18:22–36.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
## Not run:
# Bootstrap analysis on T3 solution using matching via optimal transformation
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2,
1e-6, 0, 0, 1, laba, labb, labc)
# Bootstrap analysis on T3 solution using matching via orthogonal rotation
# (when labels are not available)
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2,
1e-6, 0, 0, 0)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.