R/TransModel.default.R

TransModel.default <-
function(formula = formula(data),data = parent.frame(),r=0,CICB.st=FALSE,subset,dx=0.001,iter.max=100,num.sim=200){
    if(r<0) stop("the transformation parameter r must be non-negative",call. = FALSE)
    copy.data <- data
    call <- match.call()
    mf <- match.call(expand.dots = FALSE)
    temp <- c("", "formula", "data", "copy.data", "na.action","as.factor","subset")
    mf <- mf[match(temp, names(mf), nomatch = 0)]
    mf[[1]] <- as.name("model.frame")

    temp.x<-terms(formula, data = copy.data)
    mf$formula <- temp.x
    mf <- eval(mf, parent.frame())
    Y <- model.extract(mf, "response")
    obs.t<-Y[,1]
    delta<-Y[,2]
    mt <- attr(mf, "terms")
    z0 <- model.matrix(mt, mf)
    z <- z0[,-1]
    p = dim(z)[2]
    n = dim(z)[1]

    if(p==0){
	ord.bz<-0
	ord.wt<-rep(1,n)
	ord.delta<-delta[order(obs.t)]
	s0 = S0.fun(ord.bz,n,ord.wt)
	Rt = Rt.fun(ord.delta,s0,ord.wt)
	output<-list(ord.time=sort(obs.t),ord.delta=ord.delta,Rt=Rt,r=r,p=p,CICB.st=CICB.st,call=match.call())
	if(CICB.st){
	  rep.Rt<-matrix(nrow=n,ncol=num.sim)
	  for(sim in 1:num.sim){
	    wt = rexp(n)
	    ord.wt = wt[order(obs.t)]
	    s0 = S0.fun(ord.bz,n,ord.wt)
	    rep.Rt[,sim] = Rt.fun(ord.delta,s0,ord.wt)
	  }
	output$rep.Rt = t(rep.Rt)
	}
    }
    if(p>1) {zc = t(t(z) - apply(z,2,mean))}
    if(p==1) {zc = as.matrix(z-mean(z))}
    varnms<-colnames(z)
if(p>0){
    ix = order(obs.t)
    ord.delta = delta[ix]
    ord.z = as.matrix(zc[ix,])
    colnames(ord.z)<- colnames(z)<-varnms

    beta.ini = rep(0,p)
    Rt.ini = cumsum(1/(n:1))

    ###solving estimating equations for beta and Rt
    wt<-rep(1,n)
    temp.b<-solve.beta(beta.ini,Rt.ini,obs.t,delta,z,wt,r,dx,iter.max)
    beta<-temp.b$Beta
    Rt<-temp.b$data$Rt
    converged<-temp.b$converged
    iter<-temp.b$iter
    ###compute the variance-covariance matrix of beta
    ###PH model r = 0
    if(r == 0){
      Sigma = ginv(temp.b$Hbeta)
    }
    ###general PO model r > 0
    if(r > 0){
      dRt = Rt - c(0,Rt[1:(n-1)])
      ord.bz = as.numeric(ord.z%*%beta)
      a = Rt*exp(-ord.bz)/(1+r*Rt*exp(-ord.bz))
      B2 = sum(a) - cumsum(a) + a
      b = exp(-ord.bz)/(1+r*Rt*exp(-ord.bz))^2
      B1 = sum(b) - cumsum(b) + b
      bt = exp(cumsum(dRt*B1/B2))
      Bzt = matrix(0,nrow=n,ncol=p)
      Zbart = matrix(0,nrow=n,ncol=p)
      A = matrix(0,nrow=p,ncol=p)
      V = matrix(0,nrow=p,ncol=p)
      for(i in 1:(n-1)){
         B = rep(bt[i],n-i+1)/bt[i:n]
         Bzt[i,] = apply(ord.z[i:n,]*a[i:n]*B,2,sum)
         Zbart[i,] = Bzt[i,]/B2[i]
         c1 = exp(-ord.bz)*dRt[i]/(1+r*Rt[i]*exp(-ord.bz))^2
         A = A + (t(ord.z[i:n,]) - as.numeric(Zbart[i,]))%*%(ord.z[i:n,]*c1[i:n])
         c2 = exp(-ord.bz)*dRt[i]/(1+r*Rt[i]*exp(-ord.bz))
         V = V + (t(ord.z[i:n,]) - as.numeric(Zbart[i,]))%*%(t(t(ord.z[i:n,]) - as.numeric(Zbart[i,]))*c2[i:n])
      }
      Bzt[n,] = ord.z[n,]*a[n]
      Zbart[n,] = Bzt[n,]/B2[n]
      d = as.numeric(ord.z[n,] - Zbart[n,])
      A = A + d%*%t(as.numeric(ord.z[n,])*exp(-ord.bz[n])*dRt[n]/(1+r*Rt[n]*exp(-ord.bz[n]))^2)
      V = V + d%*%t(d*exp(-ord.bz[n])*dRt[n]/(1+r*Rt[n]*exp(-ord.bz[n])))
      invA = solve(A)
      Sigma = invA%*%V%*%t(invA)
    }            
    vcov=matrix(Sigma,nrow=p)
    names(beta)<-colnames(vcov)<-rownames(vcov)<-colnames(z)

    output<-list(coefficients=-beta,vcov=vcov,formula=formula,CICB.st=CICB.st,
         r=r,converged=c(converged,iter),df=n-1,call=match.call())

    if(CICB.st){
      cicb<-var.e(obs.t,delta,z,r,dx,iter.max,n,p,num.sim)
      output$rep.beta<-cicb[[1]]
      output$rep.Rt<-cicb[[2]]
    }
    output$p = p
    output$ord.time<-sort(obs.t)
    output$ord.delta=ord.delta
    output$z=z
    output$ord.z=as.matrix(z[order(obs.t),])
    output$Rt=temp.b$data$Rt
}
    class(output)<-"TransModel"
    return(output)
}

Try the TransModel package in your browser

Any scripts or data that you put into this service are public.

TransModel documentation built on May 2, 2019, 6:13 a.m.