View source: R/GeneMapPathway.R
gene_map_pathway | R Documentation |
This function takes multiple data frames and pathway IDs, merging them into a new data frame. Each data frame represents a type of analysis (e.g., BP, KEGG, MF, etc.).
gene_map_pathway(
BP_dataframe,
BP_ids,
KEGG_dataframe,
KEGG_ids,
MF_dataframe,
MF_ids,
REACTOME_dataframe,
REACTOME_ids,
CC_dataframe,
CC_ids,
DO_dataframe,
DO_ids
)
BP_dataframe |
Data frame for Biological Process analysis |
BP_ids |
Selected pathway IDs for Biological Process analysis |
KEGG_dataframe |
Data frame for KEGG analysis |
KEGG_ids |
Selected pathway IDs for KEGG analysis |
MF_dataframe |
Data frame for Molecular Function analysis |
MF_ids |
Selected pathway IDs for Molecular Function analysis |
REACTOME_dataframe |
Data frame for REACTOME analysis |
REACTOME_ids |
Selected pathway IDs for REACTOME analysis |
CC_dataframe |
Data frame for Cellular Component analysis |
CC_ids |
Selected pathway IDs for Cellular Component analysis |
DO_dataframe |
Data frame for Disease Ontology analysis |
DO_ids |
Selected pathway IDs for Disease Ontology analysis |
A new data frame that includes pathways, gene, type, and value columns
# Simulating data for different analysis types
# Simulate Biological Process (BP) data frame
BP_df <- data.frame(
ID = c("GO:0002376", "GO:0019724"),
geneID = c("GENE1/GENE2", "GENE3/GENE4"),
Description = c("Immune response", "Glycosylation process")
)
# Simulate KEGG data frame
KEGG_df <- data.frame(
ID = c("12345", "67890"),
geneID = c("GENE5/GENE6", "GENE7/GENE8"),
Description = c("Pathway 1", "Pathway 2")
)
# Simulate Molecular Function (MF) data frame
MF_df <- data.frame(
ID = c("ABC123", "DEF456"),
geneID = c("GENE9/GENE10", "GENE11/GENE12"),
Description = c("Molecular function A", "Molecular function B")
)
# Simulate REACTOME data frame
REACTOME_df <- data.frame(
ID = c("R-HSA-12345", "R-HSA-67890"),
geneID = c("GENE13/GENE14", "GENE15/GENE16"),
Description = c("Pathway in Reactome 1", "Pathway in Reactome 2")
)
# Simulate Cellular Component (CC) data frame
CC_df <- data.frame(
ID = c("GO:0005575", "GO:0005634"),
geneID = c("GENE17/GENE18", "GENE19/GENE20"),
Description = c("Cellular component A", "Cellular component B")
)
# Simulate Disease Ontology (DO) data frame
DO_df <- data.frame(
ID = c("DOID:123", "DOID:456"),
geneID = c("GENE21/GENE22", "GENE23/GENE24"),
Description = c("Disease A", "Disease B")
)
# Example pathway IDs for each analysis
BP_ids <- c("GO:0002376", "GO:0019724")
KEGG_ids <- c("12345", "67890")
MF_ids <- c("ABC123", "DEF456")
REACTOME_ids <- c("R-HSA-12345", "R-HSA-67890")
CC_ids <- c("GO:0005575", "GO:0005634")
DO_ids <- c("DOID:123", "DOID:456")
# Generate the pathway-gene map using the gene_map_pathway function
pathway_gene_map <- gene_map_pathway(
BP_dataframe = BP_df, BP_ids = BP_ids,
KEGG_dataframe = KEGG_df, KEGG_ids = KEGG_ids,
MF_dataframe = MF_df, MF_ids = MF_ids,
REACTOME_dataframe = REACTOME_df, REACTOME_ids = REACTOME_ids,
CC_dataframe = CC_df, CC_ids = CC_ids,
DO_dataframe = DO_df, DO_ids = DO_ids
)
# Display the resulting pathway-gene mapping data frame
print(pathway_gene_map)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.