View source: R/FacetDensityFoldchange.R
facet_density_foldchange | R Documentation |
This function creates faceted high-density region plots using ggdensity for adding optional density rug and density contours, and scatter points. It also adds a regression line and Pearson correlation label. The plot is faceted by a grouping variable.
facet_density_foldchange(
data,
x_var,
y_var,
group_var,
facet_var,
palette,
show_points = FALSE,
show_density = TRUE,
point_size = 2.5,
point_alpha = 0.1,
line_size = 1.6,
cor_method = "pearson",
cor_label_pos = c("left", 0.97),
cor_vjust = NULL
)
data |
Data frame containing variables for plotting. |
x_var |
Name of the x-axis variable as a string. |
y_var |
Name of the y-axis variable as a string. |
group_var |
Name of the grouping variable for color mapping as a string. |
facet_var |
Name of the faceting variable. |
palette |
Color palette for the plot as a character vector. |
show_points |
Logical, if TRUE adds scatter points to the plot. |
show_density |
Logical, if TRUE adds filled density contours to the plot. |
point_size |
Size of the points, relevant if show_points is TRUE. |
point_alpha |
Transparency level of the points, relevant if show_points is TRUE. |
line_size |
Size of the regression line. |
cor_method |
Method to calculate correlation ("pearson" or "spearman"). |
cor_label_pos |
Vector of length 2 indicating the position of the correlation label (x and y). |
cor_vjust |
Vertical justification for correlation label, default is NULL. |
A 'ggplot' object representing the high-density region plot.
combined_df_file <- system.file("extdata", "combined_df.rds", package = "TransProR")
combined_df <- readRDS(combined_df_file)
pal2 = c("#2787e0","#1a9ae0","#1dabbf","#00897b","#43a047","#7cb342")
all_facet_density_foldchange_name1 <- facet_density_foldchange(
data = combined_df,
x_var = "log2FoldChange_1",
y_var = "log2FoldChange_2",
group_var = "name",
facet_var = "name",
palette = pal2,
show_points = TRUE,
show_density = FALSE,
point_size = 2,
point_alpha = 0.1,
line_size = 1.6,
cor_method = "pearson",
cor_label_pos = c("left", "top"),
cor_vjust = 1
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.