Nothing
#' Create faceted high-density region plots with optional points and density contours
#'
#' This function creates faceted high-density region plots using ggdensity for
#' adding optional density rug and density contours, and scatter points. It also adds a regression line
#' and Pearson correlation label. The plot is faceted by a grouping variable.
#'
#' @param data Data frame containing variables for plotting.
#' @param x_var Name of the x-axis variable as a string.
#' @param y_var Name of the y-axis variable as a string.
#' @param group_var Name of the grouping variable for color mapping as a string.
#' @param facet_var Name of the faceting variable.
#' @param palette Color palette for the plot as a character vector.
#' @param show_points Logical, if TRUE adds scatter points to the plot.
#' @param show_density Logical, if TRUE adds filled density contours to the plot.
#' @param point_size Size of the points, relevant if show_points is TRUE.
#' @param point_alpha Transparency level of the points, relevant if show_points is TRUE.
#' @param line_size Size of the regression line.
#' @param cor_method Method to calculate correlation ("pearson" or "spearman").
#' @param cor_label_pos Vector of length 2 indicating the position of the correlation label (x and y).
#' @param cor_vjust Vertical justification for correlation label, default is NULL.
#' @return A `ggplot` object representing the high-density region plot.
#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth scale_fill_manual scale_color_manual facet_wrap theme margin
#' @importFrom ggdensity geom_hdr geom_hdr_rug
#' @importFrom ggpubr stat_cor
#' @importFrom hrbrthemes theme_ipsum
#' @importFrom grid unit
#' @importFrom stats as.formula
#' @examples
#' combined_df_file <- system.file("extdata", "combined_df.rds", package = "TransProR")
#' combined_df <- readRDS(combined_df_file)
#' pal2 = c("#2787e0","#1a9ae0","#1dabbf","#00897b","#43a047","#7cb342")
#' all_facet_density_foldchange_name1 <- facet_density_foldchange(
#' data = combined_df,
#' x_var = "log2FoldChange_1",
#' y_var = "log2FoldChange_2",
#' group_var = "name",
#' facet_var = "name",
#' palette = pal2,
#' show_points = TRUE,
#' show_density = FALSE,
#' point_size = 2,
#' point_alpha = 0.1,
#' line_size = 1.6,
#' cor_method = "pearson",
#' cor_label_pos = c("left", "top"),
#' cor_vjust = 1
#' )
#' @export
facet_density_foldchange <- function(data,
x_var,
y_var,
group_var,
facet_var,
palette,
show_points = FALSE,
show_density = TRUE,
point_size = 2.5,
point_alpha = 0.1,
line_size = 1.6,
cor_method = "pearson",
cor_label_pos = c("left", 0.97),
cor_vjust = NULL) {
# Begin constructing the ggplot
plot <- ggplot2::ggplot(data, ggplot2::aes_string(x = x_var, y = y_var, fill = group_var))
# Optionally add density rug
plot <- plot + ggdensity::geom_hdr_rug()
# Optionally add density contours
if (show_density) {
plot <- plot + ggdensity::geom_hdr()
}
# Optionally add points
if (show_points) {
plot <- plot + ggplot2::geom_point(ggplot2::aes_string(color = group_var), shape = 21,
size = point_size, alpha = point_alpha)
}
# Add regression line and correlation label
plot <- plot +
ggplot2::geom_smooth(ggplot2::aes_string(x = x_var, y = y_var, color = group_var),
method = 'lm', level = 0.95, size = line_size)
# Add regression line and correlation label
if (is.null(cor_vjust)) {
plot <- plot + ggpubr::stat_cor(ggplot2::aes_string(color = group_var), method = cor_method, label.x.npc = cor_label_pos[1], label.y.npc = cor_label_pos[2])
} else {
plot <- plot + ggpubr::stat_cor(ggplot2::aes_string(color = group_var), method = cor_method, label.x.npc = cor_label_pos[1], label.y.npc = cor_label_pos[2], vjust = cor_vjust)
}
# Customize scales and facet wrapping
plot <- plot +
ggplot2::scale_fill_manual(values = palette) +
ggplot2::scale_color_manual(values = palette) +
ggplot2::facet_wrap(stats::as.formula(paste0("~ ", facet_var)), scales = "free_x") +
hrbrthemes::theme_ipsum() +
ggplot2::theme(plot.margin = ggplot2::margin(10, 10, 10, 10),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.spacing = grid::unit(2, "mm"))
# Return the `ggplot` object
return(plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.