Nothing
S.est = function(data, Omega.hat.list){
# S.est: the function calculating the covariance matrix of each mode
p.vec = dim(data)
M = length(p.vec) - 1
n.da = p.vec[M+1]
p.vec = p.vec[-(M+1)]
Omega.hat.list.sqrt = list()
S.hat.list0 = list()
for (m in 1:M) {
Omega.hat.list.sqrt[[m]] = expm::sqrtm(Omega.hat.list[[m]])
S.hat.list0[[m]] = solve(Omega.hat.list[[m]])
}
S.hat.list1 = list()
for(m in 1:M){
S.array = array(0,c(p.vec[m],p.vec[m],n.da))
Omega.hat.list.sqrt.m = Omega.hat.list.sqrt
Omega.hat.list.sqrt.m[[m]] = diag(p.vec[m])
for(i in 1:n.da){
d=0
eval(parse(text=paste('d=data[',paste(rep(',',M),collapse=''),'i]')))
Vi = k_unfold( as.tensor(ttl( as.tensor(d) , Omega.hat.list.sqrt.m , ms=1:M)@data) ,m=m)@data
S.array[,,i] = Vi %*% t(Vi)
}
S.mat = apply(S.array,c(1,2),mean) * p.vec[m] / prod(p.vec)
S.hat.list1[[m]] = S.mat
}
S.hat.list = list(sig0=S.hat.list0, sig1=S.hat.list1)
return(S.hat.list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.