| CarbonExample1Data | Carbon, C. C. (2013), data set #1 |
| CarbonExample2Data | Carbon, C. C. (2013), data set #2 |
| CarbonExample3Data | Carbon, C. C. (2013), data set #3 |
| check_exponential_prior | Checks for validity of values for use as exponential... |
| check_normal_prior | Checks for validity of values for use as normal distribution... |
| check_variables | Checks validity of variables' matrix |
| coef_summary | Computes mean and optional quantiles for a coefficient. |
| coef.tridim_transformation | Posterior distributions for transformation coefficients in... |
| EyegazeData | Eye gaze calibration data |
| Face3D_M010 | Face landmarks, male, #010 |
| Face3D_M101 | Face landmarks, male, #101 |
| Face3D_M244 | Face landmarks, male, #244 |
| Face3D_M92 | Face landmarks, male, #092 |
| Face3D_W070 | Face landmarks, female, #070 |
| Face3D_W097 | Face landmarks, female, #097 |
| Face3D_W182 | Face landmarks, female, #182 |
| Face3D_W243 | Face landmarks, female, #243 |
| fit_transformation | Fitting Bidimensional or Tridimensional Regression /... |
| fit_transformation_df | Fitting Bidimensional or Tridimensional Regression /... |
| FriedmanKohlerData1 | Friedman & Kohler (2003), data set #1 |
| FriedmanKohlerData2 | Friedman & Kohler (2003), data set #2 |
| get_beta_n | Returns number of free matrix parameters in addition to... |
| is.tridim_transformation | Checks if argument is a 'tridim_transformation' object |
| loo.tridim_transformation | Computes an efficient approximate leave-one-out... |
| m2_affine | 2D Affine |
| m2_euclidean | 2D Euclidean |
| m2_projective | 2D Projective |
| m2_translation | 2D Translation Matrix |
| m3_affine | 3D Affine |
| m3_euclidean_x | 3D Euclidean, rotation about x |
| m3_euclidean_y | 3D Euclidean, rotation about y |
| m3_euclidean_z | 3D Euclidean, rotation about z |
| m3_projective | 3D Projective |
| m3_translation | 3D Translation Matrix |
| NakayaData | Nakaya (1997) |
| plot.tridim_transformation | Posterior interval plots for key parameters. Uses... |
| predict.tridim_transformation | Computes posterior samples for the posterior predictive... |
| print.tridim_transformation | Prints out tridim_transformation object |
| R2 | Computes R-squared using Bayesian R-squared approach. For... |
| summary.tridim_transformation | Summary for a tridim_transformation object |
| transformation_matrix | Transformation matrix, 2D or 3D depending on data and... |
| TriDimRegression-package | The 'TriDimRegression' package. |
| tridim_transformation-class | Class 'tridim_transformation'. |
| variable_summary | Computes mean and optional probabilities for a given... |
| waic.tridim_transformation | Computes widely applicable information criterion (WAIC). |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.