Nothing
## --##--##--##--##--##--##--##--##--##--##--##--##--##
## Functions related to the normal distribution ##
## --##--##--##--##--##--##--##--##--##--##--##--##--##
#' @param mean mean of parent distribution
#' @param sd standard deviation is parent distribution
#' @rdname rtrunc
#' @export
rtruncnorm <- function(n, mean, sd, a = -Inf, b = Inf, faster = FALSE) {
class(n) <- "trunc_normal"
if (faster) {
family <- gsub("trunc_", "", class(n))
parms <- mget(ls())[grep("^faster$|^n$|^family$", ls(), invert = TRUE)]
return(rtrunc_direct(n, family, parms, a, b))
} else {
parms <- mget(ls())[grep("^faster$", ls(), invert = TRUE)]
return(sampleFromTruncated(parms))
}
}
rtrunc.normal <- rtruncnorm
#' @export
dtrunc.trunc_normal <- function(
y, mean = 0, sd = 1, eta, a = -Inf, b = Inf, ...
) {
if (missing(eta)) {
eta <- parameters2natural.parms_normal(c("mean" = mean, "sd" = sd))
}
parm <- natural2parameters.parms_normal(eta)
dens <- rescaledDensities(y, a, b, dnorm, pnorm, parm[1], parm[2])
return(dens)
}
#' @rdname dtrunc
#' @export
dtruncnorm <- dtrunc.trunc_normal
#' @export
empiricalParameters.trunc_normal <- function(y, ...) {
# Returns empirical parameter estimates mean and sd
parms <- c(mean = mean(y), sd = sqrt(var(y)))
class(parms) <- "parms_normal"
parms
}
#' @method sufficientT trunc_normal
sufficientT.trunc_normal <- function(y) {
cbind(y, y^2)
}
#' @export
natural2parameters.parms_normal <- function(eta, ...) {
# eta: The natural parameters in a normal distribution
# returns (mean,sigma)
if (length(eta) != 2) stop("Eta must be a vector of two elements")
parms <- c("mean" = -0.5 * eta[[1]] / eta[[2]], "sd" = sqrt(-0.5 / eta[[2]]))
class(parms) <- class(eta)
parms
}
#' @export
parameters2natural.parms_normal <- function(parms, ...) {
# parms: The parameters mean and sd in a normal distribution
# returns the natural parameters
eta <- c(eta1 = parms[["mean"]], eta2 = -0.5) / parms[["sd"]]^2
class(eta) <- class(parms)
eta
}
#' @method getYseq trunc_normal
getYseq.trunc_normal <- function(y, y.min, y.max, n = 100) {
mean <- mean(y, na.rm = TRUE)
sd <- var(y, na.rm = TRUE)^0.5
lo <- max(y.min, mean - 3.5 * sd)
hi <- min(y.max, mean + 3.5 * sd)
out <- seq(lo, hi, length = n)
class(out) <- class(y)
return(out)
}
#' @method getGradETinv parms_normal
getGradETinv.parms_normal <- function(eta, ...) {
# eta: Natural parameter
# return the inverse of E.T differentiated with respect to eta' : p x p matrix
A_inv <- 0.5 * matrix(
c(
-1 / eta[2], eta[1] / eta[2]^2,
eta[1] / eta[2]^2, 1 / eta[2]^2 - eta[1]^2 / eta[2]^3
),
ncol = 2
)
solve(A_inv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.