Nothing
## --##--##--##--##--##--##--##--##--##--##--##--##--##
## Functions related to the Poisson distribution ##
## --##--##--##--##--##--##--##--##--##--##--##--##--##
#' @param lambda mean and var of "parent" distribution
#' @rdname rtrunc
#' @export
rtruncpois <- rtrunc.poisson <- function(
n, lambda, a = 0, b = Inf, faster = FALSE
) {
class(n) <- "trunc_poisson"
if (faster) {
family <- gsub("trunc_", "", class(n))
parms <- mget(ls())[grep("^faster$|^n$|^family$", ls(), invert = TRUE)]
return(rtrunc_direct(n, family, parms, a, b))
} else {
parms <- mget(ls())[grep("^faster$", ls(), invert = TRUE)]
return(sampleFromTruncated(parms))
}
}
#' @export
dtrunc.trunc_poisson <- function(y, lambda, eta, a = 0, b = Inf, ...) {
if (missing(eta)) {
eta <- parameters2natural.parms_poisson(lambda)
}
parm <- exp(eta)
dens <- rescaledDensities(y, a - 1, b, dpois, ppois, parm)
return(dens)
}
#' @rdname dtrunc
#' @export
dtruncpois <- dtrunc.trunc_poisson
#' @export
empiricalParameters.trunc_poisson <- function(y, ...) {
# Returns empirical parameter estimate for lambda
parms <- c("lambda" = mean(y))
class(parms) <- "parms_poisson"
parms
}
#' @method sufficientT trunc_poisson
sufficientT.trunc_poisson <- function(y) {
y
}
#' @export
natural2parameters.parms_poisson <- function(eta, ...) {
# eta: The natural parameters in a Poisson distribution
# returns (mean,sigma)
if (length(eta) != 1) stop("Eta must be one single number")
lambda <- c(lambda = exp(eta[[1]]))
class(lambda) <- class(eta)
lambda
}
#' @export
parameters2natural.parms_poisson <- function(parms, ...) {
# parms: The parameter lambda in a Poisson distribution
# returns the natural parameters
eta <- prepEta(log(parms), class(parms))
}
#' @method getGradETinv parms_poisson
getGradETinv.parms_poisson <- function(eta, ...) {
# eta: Natural parameter
# return the inverse of E.T differentiated with respect to eta
exp(-eta)
}
#' @method getYseq trunc_poisson
getYseq.trunc_poisson <- function(y, y.min = 0, y.max, n = 100) {
mean <- mean(y, na.rm = TRUE)
var.y <- var(y, na.rm = TRUE)
lo <- max(round(y.min), 0)
hi <- min(y.max, round(mean + 10 * sqrt(var.y)))
out <- seq(lo, hi)
class(out) <- class(y)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.