Nothing
context("qtrunc, upper truncation")
test_that("qtrunc() works as expected (beta)", {
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
shp1 <- sample(1:10, 1L)
shp2 <- sample(1:10, 1L)
pt <- runif(i)
qt <- c(runif(100L), pt)
a <- min(qt) - rchisq(1L, 5L)
b <- max(qt) + rchisq(1L, 5L)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, "beta", shp1, shp2, a = a, b = b, lower.tail = lt, log.p = lg
)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], "beta", shp1, shp2, lower.tail = lt, log.p = lg,
a = a, b = b
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (binomial)", {
fam <- "binomial"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
sz <- sample(1:10, 1L)
pb <- runif(1)
pt <- runif(i)
ab_pr <- c(runif(100L), pt)
b <- qtrunc(max(ab_pr), fam, sz, pb, lower.tail = TRUE, log.p = FALSE)
a <- qtrunc(min(ab_pr), fam, sz, pb, lower.tail = TRUE, log.p = FALSE)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
q_stats <- qbinom(pt, sz, pb, lower.tail = lt, log.p = lg)
expect_length(pt, i)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
q_lo <- max(q_trunc[ii] - 1L, 0L, a)
q_hi <- min(q_trunc[ii] + 1L, sz, b)
ptr_1 <- ptrunc(
q_lo, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
ptr_2 <- ptrunc(
q_hi, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
# because pt will have been rounded
if (q_trunc[ii] > 0L && q_hi < b && q_lo > a) {
if (lt) {
expect_gte(pt[ii], ptr_1)
expect_lte(pt[ii], ptr_2)
} else {
expect_lte(pt[ii], ptr_1)
expect_gte(pt[ii], ptr_2)
}
}
}
}
}
}
})
test_that("qtrunc() works as expected (chisq)", {
fam <- "chisq"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
df <- sample(1:10, 1L)
pt <- runif(i)
a <- min(qtrunc(pt, fam, df, lower.tail = lt, log.p = FALSE) / 2000)
b <- max(qtrunc(pt, fam, df, lower.tail = lt, log.p = FALSE) * 2000)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, fam, df, lower.tail = lt, log.p = lg, a = a, b = b
)
q_stats <- qchisq(pt, df, lower.tail = lt, log.p = lg)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], fam, df, lower.tail = lt, log.p = lg, a = a, b = b
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (contbern)", {
fam <- "contbern"
for (i in seq_len(3L)) {
lambda <- runif(1L)
pt <- runif(i)
a <- runif(1L)
b <- runif(1L, a, 1L)
q_trunc <- qtrunc(pt, fam, lambda, a = a, b = b)
q_stats <- qcontbern(pt, lambda)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(q_trunc[ii], fam, lambda, a = a, b = b)
expect_equal(pt[ii], ptr)
}
}
})
test_that("qtrunc() works as expected (exp)", {
fam <- "exp"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
rate <- rchisq(1L, df = 10L)
pt <- runif(i)
a <- rexp(1L, rate)
b <- rexp(1L, rate)
while (b <= a) {
b <- rexp(1L, rate)
}
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, fam, rate, lower.tail = lt, log.p = lg, a = a, b = b
)
q_stats <- qexp(pt, rate, lower.tail = lt, log.p = lg)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], fam, rate, lower.tail = lt, log.p = lg, a = a, b = b
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (gamma)", {
fam <- "gamma"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
shp <- rchisq(1L, df = 10L)
rte <- rchisq(1L, df = 10L)
pt <- runif(i)
ab <- rgamma(2L, shp, rte)
a <- min(ab)
b <- max(ab)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, fam, shp, rte, lower.tail = lt, log.p = lg, a = a, b = b
)
q_stats <- qgamma(pt, shp, rte, lower.tail = lt, log.p = lg)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], fam, shp, rte, lower.tail = lt, log.p = lg, a = a,
b = b
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("q_trunc() works as expected (invgamma)", {
fam <- "invgamma"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
shp <- rchisq(1L, df = 10L)
rte <- rchisq(1L, df = 10L)
skl <- 1 / rte
pt <- runif(i)
if (lg) pt <- log(pt)
ab <- rinvgamma(2L, shp, rte)
a <- min(ab)
b <- max(ab)
q_trunc_sr <- qtrunc(
pt, fam, shp, rte, a = a, b = b, lower.tail = lt, log.p = lg
)
q_trunc_ss <- qtrunc(
pt, fam, shp, scale = skl, a = a, b = b, lower.tail = lt, log.p = lg
)
if (lg) {
q_stats <- qinvgamma(
exp(pt), shp, rte, lower.tail = lt, log.p = FALSE
)
} else {
q_stats <- qinvgamma(pt, shp, rte, lower.tail = lt, log.p = lg)
}
expect_length(pt, i)
expect_length(q_trunc_sr, i)
expect_equal(q_trunc_sr, q_trunc_ss)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc_sr[ii], fam, shp, rte, lower.tail = lt, log.p = lg, a = a,
b = b
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (invgauss)", {
fam <- "invgauss"
for (i in seq_len(3L)) {
m <- rchisq(1L, df = 10L)
s <- rchisq(1L, df = 10L)
a <- min(rinvgauss(10L, m, s))
b <- max(rinvgauss(10L, m, s), a)
pt <- runif(i)
q_trunc <- qtrunc(pt, fam, m, s, a, b)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(q_trunc[ii], fam, m, s, a = a, b = b)
expect_equal(pt[ii], ptr, tolerance = 1e-3)
}
}
})
test_that("qtrunc() works as expected (lognormal)", {
fam <- "lognormal"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
mn <- rnorm(1L, sd = 10)
sg <- rchisq(1L, 5L)
pt <- runif(i)
a <- qtrunc(min(pt) ^ 2, fam, mn, sg, lower.tail = TRUE, log.p = FALSE)
b <- qtrunc(
sqrt(max(pt)), fam, mn, sg, lower.tail = TRUE, log.p = FALSE
)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(pt, fam, mn, sg, a, b, lower.tail = lt, log.p = lg)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], fam, mn, sg, a, b, lower.tail = lt, log.p = lg
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (negbinom)", {
fam <- "nbinom"
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
sz <- sample(1:10, 1L)
pb <- runif(1)
mu <- sz * (1 - pb) / pb
pt <- runif(i)
a <- qtrunc(min(pt) ^ 2, fam, sz, pb, lower.tail = TRUE, log.p = FALSE)
b <- qtrunc(
sqrt(max(pt)), fam, sz, pb, lower.tail = TRUE, log.p = FALSE
)
if (lg) pt <- log(pt)
q_trunc_pb <- qtrunc(
pt, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
q_trunc_mu <- qtrunc(
pt, fam, sz, mu = mu, a = a, b = b, lower.tail = lt, log.p = lg
)
q_stats <- qnbinom(pt, sz, pb, lower.tail = lt, log.p = lg)
expect_length(q_trunc_pb, i)
expect_equal(q_trunc_pb, q_trunc_mu, tolerance = 1e-6)
for (ii in seq_along(pt)) {
# Working back to p from q
q_lo <- max(q_trunc_pb[ii] - 1L, 0L, a)
q_hi <- min(q_trunc_pb[ii] + 1L, b)
ptr_1 <- ptrunc(
q_lo, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
ptr_2 <- ptrunc(
q_hi, fam, sz, pb, a = a, b = b, lower.tail = lt, log.p = lg
)
# because pt will have been rounded
if (lt) {
expect_lte(ptr_1, ptr_2)
} else {
expect_gte(ptr_1, ptr_2)
}
}
}
}
}
})
test_that("qtrunc() works as expected (normal)", {
for (lg in c(FALSE, TRUE)) {
for (lt in c(TRUE, FALSE)) {
for (i in seq_len(3L)) {
mn <- rnorm(1L, sd = 10)
sg <- rchisq(1L, 5L)
pt <- runif(i)
ab <- c(runif(100L), pt)
b <- qtrunc(
max(ab), mean = mn, sd = sg, lower.tail = TRUE, log.p = FALSE
)
a <- qtrunc(
min(ab), mean = mn, sd = sg, lower.tail = TRUE, log.p = FALSE
)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, "normal", mean = mn, sd = sg, a = a, b = b,
lower.tail = lt, log.p = lg
)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
# Working back to p from q
ptr <- ptrunc(
q_trunc[ii], "normal", mean = mn, sd = sg, a = a, b = b,
lower.tail = lt, log.p = lg
)
expect_equal(pt[ii], ptr)
}
}
}
}
})
test_that("qtrunc() works as expected (poisson)", {
fam <- "poisson"
for (lt in c(TRUE, FALSE)) {
for (lg in c(FALSE, TRUE)) {
for (i in seq_len(3L)) {
lambda <- sample(1:50, 1L)
pt <- runif(i)
a <- qtrunc(min(pt) / 2, fam, lambda, lower.tail = TRUE, log.p = FALSE)
b <- qtrunc(
sqrt(max(pt)), fam, lambda, lower.tail = TRUE, log.p = FALSE
)
if (lg) pt <- log(pt)
q_trunc <- qtrunc(
pt, fam, lambda, a = a, b = b, lower.tail = lt, log.p = lg
)
q_stats <- qpois(pt, lambda, lower.tail = lt, log.p = lg)
expect_length(q_trunc, i)
for (ii in seq_along(pt)) {
q_lo <- max(q_trunc[ii] - 1L, 0L, a)
q_hi <- min(q_trunc[ii] + 1L, b)
ptr_1 <- ptrunc(
q_lo, fam, lambda, a = a, b = b, lower.tail = lt, log.p = lg
)
ptr_2 <- ptrunc(
q_hi, fam, lambda, a = a, b = b, lower.tail = lt, log.p = lg
)
# because pt will have been rounded
if (lt) {
expect_lte(ptr_1, ptr_2)
} else {
expect_gte(ptr_1, ptr_2)
}
}
}
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.