Description Usage Arguments Value Examples
This function employs the PX-CAVI algorithm proposed in Ning (2020). The g in the slab density of the spike and slab prior is chosen to be the multivariate normal distribution, i.e., N(0, σ^2/λ_1 I_r). Details of the model and the prior can be found in the Details section in the description of the 'VBsparsePCA()' function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
x |
Data an n*p matrix. |
r |
Rank. |
lambda |
Tuning parameter for the density g. |
max.iter |
The maximum number of iterations for running the algorithm. |
eps |
The convergence threshold; the default is 10^{-4}. |
jointly.row.sparse |
The default is true, which means that the jointly row sparsity assumption is used; one could not use this assumptio by changing it to false. |
sig2.true |
The default is false, σ^2 will be estimated; if sig2 is known and its value is given, then σ^2 will not be estimated. |
threshold |
The threshold to determine whether γ_j is 0 or 1; the default value is 0.5. |
theta.int |
The initial value of theta mean; if not provided, the algorithm will estimate it using PCA. |
theta.var.int |
The initial value of theta.var; if not provided, the algorithm will set it to be 1e-3*diag(r). |
kappa.para1 |
The value of α_1 of π(κ); default is 1. |
kappa.para2 |
The value of α_2 of π(κ); default is p+1. |
sigma.a |
The value of σ_a of π(σ^2); default is 1. |
sigma.b |
The value of σ_b of π(σ^2); default is 2. |
iter |
The number of iterations to reach convergence. |
selection |
A vector (if r = 1 or with the jointly row-sparsity assumption) or a matrix (if otherwise) containing the estimated value for \boldsymbol γ. |
theta.mean |
The loadings matrix. |
theta.var |
The covariance of each non-zero rows in the loadings matrix. |
sig2 |
Variance of the noise. |
obj.fn |
A vector contains the value of the objective function of each iteration. It can be used to check whether the algorithm converges |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #In this example, the first 20 rows in the loadings matrix are nonzero, the rank is 1
set.seed(2021)
library(MASS)
library(pracma)
n <- 200
p <- 1000
s <- 20
r <- 1
sig2 <- 0.1
# generate eigenvectors
U.s <- randortho(s, type = c("orthonormal"))
U <- rep(0, p)
U[1:s] <- as.vector(U.s[, 1:r])
s.star <- rep(0, p)
s.star[1:s] <- 1
eigenvalue <- seq(20, 10, length.out = r)
# generate Sigma
theta.true <- U * sqrt(eigenvalue)
Sigma <- tcrossprod(theta.true) + sig2*diag(p)
# generate n*p dataset
X <- t(mvrnorm(n, mu = rep(0, p), Sigma = Sigma))
result <- spca.cavi.mvn(x = X, r = 1)
loadings <- result$theta.mean
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.