VARff | R Documentation |
p
Vector Auto(R)egressive ModelEstimates an Order(p
) Vector Autoregressive Models (VAR(p)) with
white noise random errors
by maximum likelihood estimation using Fisher scoring.
VARff(VAR.order = 1,
zero = c("var", "cov"),
lmean = "identitylink",
lvar = "loglink",
lcov = "identitylink")
VAR.order |
Length–1 (positive) integer vector. The order of the VAR to be fitted. |
zero |
Integer or character - string vector.
Same as |
lmean, lvar, lcov |
Same as |
Let \boldsymbol{x}_t = (x_{1, t}, \ldots, x_{K, t})^T
be a time dependent
vector of responses, with index t = 1, \ldots, T
,
and \boldsymbol{\varepsilon}_t = (\varepsilon_{1, t},
\ldots, \varepsilon_{K, t})
white noise with covariance matrix
\boldsymbol{\textrm{V}}
.
VARff
fits a linear model to the means of a
K
–variate normal distribution, where
each variable, x_{i, t}
, i = 1, \ldots, K
,
is a linear function of p
–past
lags of itself and past p
–lags of the other variables.
The model has the form
\boldsymbol{x}_t = \boldsymbol{\Phi_1} \boldsymbol{x}_{t - 1} +
\cdots + \boldsymbol{\Phi_p} \boldsymbol{x}_{t - p} +
\boldsymbol{\varepsilon}_t,
where \boldsymbol{\Phi_j}
are
K \times K
matrices of coefficients, j = 1, \ldots, K
,
to be estimated.
The elements of the covariance matrix are intercept–only by default.
An object of class "vglmff"
(see vglmff-class
) to be
used by VGLM/VGAM modelling functions, e.g.,
vglm
or vgam
.
Victor Miranda.
MVNcov
,
zero
,
Links
,
ECM.EngleGran
,
vglm
.
set.seed(20170227)
nn <- 60
var.data <- data.frame(x2 = runif(nn, -2.5, 2.5))
var.data <- transform(var.data, y1 = rnorm(nn, 1.5 - 2 * x2, sqrt(exp(1.5))),
y2 = rnorm(nn, 1.0 - 1 * x2, sqrt(exp(0.75))),
y3 = rnorm(nn, 0.5 + 1 * x2, sqrt(exp(1.0))))
fit.var <- vglm(cbind(y1, y2, y3) ~ x2, VARff(VAR.order = 2),
trace = TRUE, data = var.data)
coef(fit.var, matrix = TRUE)
summary(fit.var)
vcov(fit.var)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.