Nothing
### Finds optimal partition which minimizes the lower bound to the Variation of
### Information obtained from Jensen's inequality where the expectation and
### log are reversed.
minVI=function(psm, cls.draw=NULL, method=c("avg","comp","draws","all"), max.k=NULL){
if(any(psm !=t(psm)) | any(psm >1) | any(psm < 0) | sum(diag(psm)) != nrow(psm) ){
stop("psm must be a symmetric matrix with entries between 0 and 1 and 1's on the diagonals")}
method <- match.arg(method, choices=method)
if(method %in% c("draws","all") & is.null(cls.draw)) stop("cls.draw must be provided if method=''draws''")
if(method == "avg" | method == "all"){
if(is.null(max.k)) max.k <- ceiling(dim(psm)[1]/8)
hclust.avg=stats::hclust(stats::as.dist(1-psm), method="average")
cls.avg= t(apply(matrix(1:max.k),1,function(x) stats::cutree(hclust.avg,k=x)))
VI.avg= VI.lb(cls.avg,psm)
val.avg <- min(VI.avg)
cl.avg <- cls.avg[which.min(VI.avg),]
if(method== "avg") {
output=list(cl=cl.avg, value=val.avg, method="avg")
class(output)="c.estimate"
return(output)
}
}
if(method == "comp" | method == "all"){
if(is.null(max.k)) max.k <- ceiling(dim(psm)[1]/8)
hclust.comp <- stats::hclust(stats::as.dist(1-psm), method="complete")
cls.comp <- t(apply(matrix(1:max.k),1,function(x) stats::cutree(hclust.comp,k=x)))
VI.comp <- VI.lb(cls.comp,psm)
val.comp <- min(VI.comp)
cl.comp <- cls.comp[which.min(VI.comp),]
if(method== "comp") {
output=list(cl=cl.comp, value=val.comp, method="comp")
class(output)="c.estimate"
return(output)
}
}
if(method == "draws" | method == "all"){
n=ncol(psm)
EVI_lb_local=function(c){
f=0
for(i in 1:n){
ind=(c==c[i])
f=f+(log2(sum(ind))+log2(sum(psm[i,]))-2*log2(sum(ind*psm[i,])))/n
}
return(f)
}
VI.draws=apply(cls.draw,1,EVI_lb_local)
val.draws <- min(VI.draws)
cl.draw <- cls.draw[which.min(VI.draws),]
names(cl.draw) <- NULL
if(method== "draws") {
output=list(cl=cl.draw, value=val.draws, method="draws")
class(output)="c.estimate"
return(output)
}
}
vals <- c(val.avg, val.comp, val.draws)
cls <- rbind(cl.avg,cl.comp,cl.draw)
cls <- rbind(cls[which.min(vals),], cls)
vals <- c(min(vals), vals)
rownames(cls) <- names(vals) <- c("best","avg","comp","draws")
colnames(cls) <- NULL
res <- list(cl=cls, value=vals, method="all")
class(res)="c.estimate"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.