| bwtrim | R Documentation |
The bwtrim function computes a two-way between-within subjects ANOVA on the trimmed means. It is designed for one between-subjects variable and one within-subjects variable. The functions sppba, sppbb, and sppbi compute the main fixed effect, the main within-subjects effect, and the interaction effect only, respectively, using bootstrap. For these 3 functions the user can choose
an M-estimator for group comparisons.
bwtrim(formula, id, data, tr = 0.2, ...)
tsplit(formula, id, data, tr = 0.2, ...)
sppba(formula, id, data, est = "mom", avg = TRUE, nboot = 500, MDIS = FALSE, ...)
sppbb(formula, id, data, est = "mom", nboot = 500, ...)
sppbi(formula, id, data, est = "mom", nboot = 500, ...)
formula |
an object of class formula. |
id |
subject ID. |
data |
an optional data frame for the input data. |
tr |
trim level for the mean. |
est |
Estimate to be used for the group comparisons: either |
avg |
If |
nboot |
number of bootstrap samples. |
MDIS |
if |
... |
currently ignored. |
The tsplit function is doing exactly the same thing as bwtrim. It is kept in the package in order to be consistent with older versions of the Wilcox (2012) book.
For sppba, sppbb, and sppbi the analysis is carried out on the basis of all pairs of difference scores. The null hypothesis is that all such differences have a robust location value of zero. In the formula interface it is required to specify full model.
bwtrim returns an object of class "bwtrim" containing:
Qa |
first main effect |
A.p.value |
p-value first main effect |
A.df |
df F-distribution first main effect |
Qb |
second main effect |
B.p.value |
p-value second main effect |
B.df |
df F-distribution second main effect |
Qab |
interaction effect |
AB.p.value |
p-value interaction effect |
AB.df |
df F-distribution interaction |
call |
function call |
varnames |
variable names |
sppba, sppbb, and sppbi returns an object of class "spp" containing:
test |
value of the test statistic |
p.value |
p-value |
contrasts |
contrasts matrix |
Wilcox, R. (2017). Introduction to Robust Estimation and Hypothesis Testing (4th ed.). Elsevier.
t2way
## data need to be on long format
pictureLong <- reshape(picture, direction = "long", varying = list(3:4), idvar = "case",
timevar = c("pictype"), times = c("couple", "alone"))
pictureLong$pictype <- as.factor(pictureLong$pictype)
colnames(pictureLong)[4] <- "friend_requests"
## 2-way within-between subjects ANOVA
bwtrim(friend_requests ~ relationship_status*pictype, id = case, data = pictureLong)
## between groups effect only (MOM estimator)
sppba(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
## within groups effect only (MOM estimator)
sppbb(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
## interaction effect only (MOM estimator)
sppbi(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.