Performs a principal components analysis from the `pca`

function of the `mixOmics`

package.

1 2 3 |

`X` |
a numeric matrix (or data frame) which provides the data for the principal components analysis. It can contain missing values. |

`ncomp` |
integer, if data is complete |

`center` |
a logical value indicating whether the variables should be shifted to be zero centered.
Alternately, a vector of length equal the number of columns of |

`scale` |
a logical value indicating whether the variables should be scaled to have
unit variance before the analysis takes place. The default is |

`max.iter` |
integer, the maximum number of iterations in the NIPALS algorithm. |

`tol` |
a positive real, the tolerance used in the NIPALS algorithm. |

`...` |
not used. |

see `pca`

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.