Nothing
##
## R package abclass developed by Wenjie Wang <wang@wwenjie.org>
## Copyright (C) 2021-2022 Eli Lilly and Company
##
## This file is part of the R package abclass.
##
## The R package abclass is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package abclass is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##
##' Tune Sup-Norm Classifiers by Cross-Validation
##'
##' Tune the regularization parameter lambda for a sup-norm classifier by
##' cross-validation.
##'
##' @inheritParams supclass
##'
##' @param nfolds A positive integer specifying the number of folds for
##' cross-validation. Five-folds cross-validation will be used by default.
##' An error will be thrown out if the \code{nfolds} is specified to be less
##' than 2.
##' @param stratified A logical value indicating if the cross-validation
##' procedure should be stratified by the response label. The default value
##' is \code{TRUE} to ensure the same number of categories be used in
##' validation and training.
##' @param ... Other arguments passed to \code{supclass}.
##'
##' @return An S3 object of class \code{cv.supclass}.
##'
##' @importFrom stats sd
##' @importFrom parallel mclapply
##' @export
cv.supclass <- function(x, y,
model = c("logistic", "psvm", "svm"),
penalty = c("lasso", "scad"),
start = NULL,
control = list(),
nfolds = 5L,
stratified = TRUE,
...)
{
## nfolds
nfolds <- as.integer(nfolds)
if (nfolds < 3L) {
stop("The 'nfolds' must be > 2.")
}
## preprocess
cat_y <- cat2z(y, zero_based = FALSE)
cv_list <- cv_samples(
nobs = length(y),
nfolds = nfolds,
strata = if (stratified) cat_y$y - 1L else { integer() }
)
## main fit
res <- supclass(
x = x,
y = y,
model = model,
penalty = penalty,
start = start,
control = control,
...
)
nlambda <- length(res$regularization$lambda)
## cv part
cv_res <- parallel::mclapply(seq_len(nfolds),
function(i) {
train_idx <- cv_list$train_index[[i]]
valid_idx <- cv_list$valid_index[[i]]
tmp_fit <- supclass(
x = x[train_idx, , drop = FALSE],
y = y[train_idx],
model = model,
penalty = penalty,
start = start,
control = control,
...
)
valid_pred <- predict(
object = tmp_fit,
newx = x[valid_idx, , drop = FALSE],
type = "class",
selection = "all"
)
if (nlambda > 1) {
sapply(
valid_pred,
function(a) mean(a == y[valid_idx])
)
} else {
mean(valid_pred == y[valid_idx])
}
})
## aggregate cv results
cv_res <- do.call(cbind, cv_res)
res$cross_validation <- list(
nfolds = nfolds,
stratified = TRUE,
cv_accuracy = cv_res,
cv_accuracy_mean = rowMeans(cv_res),
cv_accuracy_sd = apply(cv_res, 1L, sd)
)
cv_res0 <- with(res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
res$cross_validation <- c(res$cross_validation, cv_res0)
## add class
class(res) <- c(sprintf("%s_sup%s", model, penalty),
"cv.supclass", "supclass")
## return
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.