Nothing
##
## R package abclass developed by Wenjie Wang <wang@wwenjie.org>
## Copyright (C) 2021-2025 Eli Lilly and Company
##
## This file is part of the R package abclass.
##
## The R package abclass is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package abclass is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##
##' MOML with ET-Lasso
##'
##' Tune the regularization parameter for MOML by the ET-Lasso method (Yang, et
##' al., 2019).
##'
##' @inheritParams moml
##' @inheritParams et.abclass
##'
##' @references
##'
##' Yang, S., Wen, J., Zhan, X., & Kifer, D. (2019). ET-Lasso: A new efficient
##' tuning of lasso-type regularization for high-dimensional data. In
##' \emph{Proceedings of the 25th ACM SIGKDD International Conference on
##' Knowledge Discovery & Data Mining} (pp. 607--616).
##'
##' @export
et.moml <- function(x,
treatment,
reward,
propensity_score,
loss = c("logistic", "boost", "hinge.boost", "lum"),
penalty = c("glasso", "lasso"),
weights = NULL,
offset = NULL,
intercept = TRUE,
control = list(),
nstages = 2,
nfolds = 0L,
stratified = TRUE,
alignment = c("fraction", "lambda"),
refit = FALSE,
...)
{
## nstages
nstages <- as.integer(nstages)
if (nstages < 1L) {
stop("The 'nstages' must be a positive integer.")
}
## loss
loss <- match.arg(as.character(loss)[1],
choices = .all_abclass_losses)
penalty <- match.arg(as.character(penalty)[1],
choices = .all_abclass_penalties)
## controls
dot_list <- list(...)
control <- do.call(moml.control, modify_list(control, dot_list))
## prepare arguments
res <- .abclass(
x = x,
y = treatment,
loss = loss,
penalty = penalty,
weights = weights,
offset = offset,
intercept = intercept,
control = control,
nstages = nstages,
nfolds = nfolds,
stratified = stratified,
alignment = alignment,
moml_args = list(
reward = reward,
propensity_score = propensity_score
)
)
## refit if needed
if (! isFALSE(refit) && length(res$et$selected) > 0) {
if (isTRUE(refit)) {
refit <- list(lambda = 1e-4, alignment = 1L)
}
idx <- res$et$selected
## inherit the penalty factors for those selected predictors
if (! is.null(res$regularization$penalty_factor)) {
refit$penalty_factor <- res$regularization$penalty_factor[idx]
}
refit_control <- modify_list(control, refit)
refit_res <- .abclass(
x = x[, idx, drop = FALSE],
y = treatment,
## assume intercept, weights, loss are the same
loss = loss,
penalty = penalty,
weights = weights,
offset = offset,
intercept = intercept,
control = refit_control,
## cv
nfolds = null0(refit$nfolds),
stratified = null0(refit$stratified),
alignment = null0(refit$alignment),
## et
nstages = null0(refit$nstages),
## moml
moml_args = list(
reward = reward,
propensity_score = propensity_score
)
)
if (! is.null(refit_res$cross_validation)) {
## add cv idx
cv_idx_list <- with(refit_res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
refit_res$cross_validation <- c(refit_res$cross_validation,
cv_idx_list)
}
res$refit <- refit_res[! names(refit_res) %in% c("specs", "category")]
res$refit$selected_coef <- idx
} else {
res$refit <- FALSE
}
## add class
class(res) <- c("et.moml", "moml", "abclass")
## return
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.