inst/examples/ex-supclass.R

library(abclass)
set.seed(123)

## toy examples for demonstration purpose
## reference: example 1 in Zhang and Liu (2014)
ntrain <- 100 # size of training set
ntest <- 1000 # size of testing set
p0 <- 2       # number of actual predictors
p1 <- 2       # number of random predictors
k <- 3        # number of categories

n <- ntrain + ntest; p <- p0 + p1
train_idx <- seq_len(ntrain)
y <- sample(k, size = n, replace = TRUE)         # response
mu <- matrix(rnorm(p0 * k), nrow = k, ncol = p0) # mean vector
## normalize the mean vector so that they are distributed on the unit circle
mu <- mu / apply(mu, 1, function(a) sqrt(sum(a ^ 2)))
x0 <- t(sapply(y, function(i) rnorm(p0, mean = mu[i, ], sd = 0.25)))
x1 <- matrix(rnorm(p1 * n, sd = 0.3), nrow = n, ncol = p1)
x <- cbind(x0, x1)
train_x <- x[train_idx, ]
test_x <- x[- train_idx, ]
y <- factor(paste0("label_", y))
train_y <- y[train_idx]
test_y <- y[- train_idx]

## regularization with the supnorm lasso penalty
options("mc.cores" = 1)
model <- supclass(train_x, train_y, model = "psvm", penalty = "lasso")
pred <- predict(model, test_x)
table(test_y, pred)
mean(test_y == pred) # accuracy

Try the abclass package in your browser

Any scripts or data that you put into this service are public.

abclass documentation built on Sept. 18, 2022, 9:05 a.m.