Nothing
#' Minimum travel cost to closest N number of opportunities
#'
#' Calculates the minimum travel cost to the closest N number of opportunities.
#' @template description_generic_cost
#'
#' @template travel_matrix
#' @template land_use_data
#' @template opportunity
#' @template travel_cost
#' @param n A `numeric` vector. The minimum number of opportunities that should
#' be considered. Defaults to 1. If more than one value is provided, the
#' output includes an extra column specifying the number of opportunities that
#' the minimum travel cost refers to.
#' @template group_by
#' @template active
#' @param fill_missing_ids A `logical`. Calculating minimum travel cost to
#' closest N number of opportunities may result in missing ids in the output
#' if they cannot reach the specified amount of opportunities across all
#' destinations they can reach. For example, estimating the minimum travel
#' time that an origin that can only reach 4 opportunities takes to reach 5
#' opportunities resulting in such origin not being included in the output.
#' When `TRUE` (the default), the function identifies which ids would be left
#' out from the output and fill their respective minimum travel costs with
#' `Inf`, which incurs in a performance penalty.
#'
#' @template return_accessibility
#'
#' @examplesIf identical(tolower(Sys.getenv("NOT_CRAN")), "true")
#' data_dir <- system.file("extdata", package = "accessibility")
#' travel_matrix <- readRDS(file.path(data_dir, "travel_matrix.rds"))
#' land_use_data <- readRDS(file.path(data_dir, "land_use_data.rds"))
#'
#' df <- cost_to_closest(
#' travel_matrix,
#' land_use_data,
#' n = 1,
#' opportunity = "schools",
#' travel_cost = "travel_time"
#' )
#' head(df)
#'
#' df <- cost_to_closest(
#' travel_matrix,
#' land_use_data,
#' n = c(1, 2),
#' opportunity = "schools",
#' travel_cost = "travel_time"
#' )
#' head(df)
#'
#' @export
cost_to_closest <- function(travel_matrix,
land_use_data,
opportunity,
travel_cost,
n = 1,
group_by = character(0),
active = TRUE,
fill_missing_ids = TRUE) {
checkmate::assert_numeric(
n,
lower = 1,
finite = TRUE,
any.missing = FALSE,
min.len = 1,
unique = TRUE
)
checkmate::assert_string(opportunity)
checkmate::assert_string(travel_cost)
checkmate::assert_logical(active, len = 1, any.missing = FALSE)
checkmate::assert_logical(fill_missing_ids, len = 1, any.missing = FALSE)
assert_group_by(group_by)
assert_travel_matrix(travel_matrix, travel_cost, group_by)
assert_land_use_data(
land_use_data,
travel_matrix,
opportunity,
active = active
)
# if not a dt, keep original class to assign later when returning result
if (!inherits(travel_matrix, "data.table")) {
original_class <- class(travel_matrix)
data <- data.table::as.data.table(travel_matrix)
} else {
data <- data.table::copy(travel_matrix)
}
if (!inherits(land_use_data, "data.table")) {
land_use_data <- data.table::as.data.table(land_use_data)
}
merge_by_reference(
data,
land_use_data,
opportunity,
left_df_idcol = ifelse(active, "to_id", "from_id")
)
group_id <- ifelse(active, "from_id", "to_id")
groups <- c(group_id, group_by)
warn_extra_cols(travel_matrix, travel_cost, group_id, groups)
access <- lapply(
n,
function(.x) calculate_cost(data, groups, opportunity, travel_cost, .x)
)
names(access) <- n
access <- data.table::rbindlist(access, idcol = "n")
access[, n := as.numeric(n)]
if (fill_missing_ids) {
unique_values <- lapply(groups, function(x) unique(travel_matrix[[x]]))
unique_values <- append(unique_values, list(n))
names(unique_values) <- c(groups, "n")
possible_combinations <- do.call(data.table::CJ, unique_values)
if (nrow(access) < nrow(possible_combinations)) {
access[, min_cost := as.numeric(min_cost)]
access <- do_fill_missing_ids(
access,
possible_combinations,
groups = c(groups, "n"),
access_col = "min_cost",
fill_value = Inf
)
}
}
data.table::setnames(
access,
c(group_id, "min_cost"),
c("id", travel_cost)
)
data.table::setcolorder(
access,
c("id", setdiff(groups, group_id), "n", travel_cost)
)
if (length(n) == 1) access[, n := NULL]
if (exists("original_class")) class(access) <- original_class
return(access[])
}
calculate_cost <- function(data, groups, opportunity, travel_cost, .x) {
env <- environment()
.opportunity_colname <- opportunity
.cost_colname <- travel_cost
if (.x == 1) {
cost <- data[
get(.opportunity_colname) > 0,
.(min_cost = suppressWarnings(min(get(.cost_colname)))),
by = eval(groups, envir = env)
]
} else {
opport_cumsum <- data[get(.opportunity_colname) > 0, ]
data.table::setorderv(opport_cumsum, c(groups, travel_cost))
opport_cumsum[
,
cum_opport := cumsum(get(.opportunity_colname)),
by = eval(groups, envir = env)
]
cost <- opport_cumsum[
cum_opport >= .x,
.(min_cost = suppressWarnings(min(get(.cost_colname)))),
by = eval(groups, envir = env)
]
}
return(cost)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.