R/adegenet.package.R

#' The adegenet package
#'
#'
#' This package is devoted to the multivariate analysis of genetic markers
#' data. These data can be codominant markers (e.g. microsatellites) or
#' presence/absence data (e.g. AFLP), and have any level of ploidy.  'adegenet'
#' defines three formal (S4) classes:\cr - \linkS4class{genind}: a class for
#' data of individuals ("genind" stands for genotypes-individuals).\cr -
#' \linkS4class{genpop}: a class for data of groups of individuals ("genpop"
#' stands for genotypes-populations)\cr - \linkS4class{genlight}: a class for
#' genome-wide SNP data\cr
#'
#' For more information about these classes, type "class ? genind", "class ?
#' genpop", or "?genlight".\cr
#'
#' Essential functionalities of the package are presented througout 4
#' tutorials, accessible using \code{adegenetTutorial(which="name-below")}:\cr
#' - \code{basics}: introduction to the package.\cr - \code{spca}: multivariate
#' analysis of spatial genetic patterns.\cr - \code{dapc}: population structure
#' and group assignment using DAPC.\cr - \code{genomics}: introduction to the
#' class \linkS4class{genlight} for the handling and analysis of genome-wide
#' SNP data.\cr
#'
#' Note: In older versions of adegenet, these tutorials were avilable as
#' vignettes, accessible through the function \code{vignette("name-below",
#' package="adegenet")}:\cr - \code{adegenet-basics}.\cr -
#' \code{adegenet-spca}.\cr - \code{adegenet-dapc}.\cr -
#' \code{adegenet-genomics}.\cr
#'
#' Important functions are also summarized below.\cr
#'
#' === IMPORTING DATA ===\cr = TO GENIND OBJECTS = \cr \code{adegenet} imports
#' data to \linkS4class{genind} object from the following softwares:\cr -
#' STRUCTURE: see \code{\link{read.structure}}\cr - GENETIX: see
#' \code{\link{read.genetix}}\cr - FSTAT: see \code{\link{read.fstat}}\cr -
#' Genepop: see \code{\link{read.genepop}}\cr To import data from any of these
#' formats, you can also use the general function
#' \code{\link{import2genind}}.\cr
#'
#' In addition, it can extract polymorphic sites from nucleotide and amino-acid
#' alignments:\cr - DNA files: use \code{\link[ape]{read.dna}} from the ape
#' package, and then extract SNPs from DNA alignments using
#' \code{\link{DNAbin2genind}}. \cr
#'
#' - protein sequences alignments: polymorphic sites can be extracted from
#' protein sequences alignments in \code{alignment} format (package
#' \code{seqinr}, see \code{\link[seqinr]{as.alignment}}) using the function
#' \code{\link{alignment2genind}}. \cr
#'
#' The function \code{\link{fasta2DNAbin}} allows for reading fasta files into
#' DNAbin object with minimum RAM requirements.\cr
#'
#' It is also possible to read genotypes coded by character strings from a
#' data.frame in which genotypes are in rows, markers in columns. For this, use
#' \code{\link{df2genind}}. Note that \code{\link{df2genind}} can be used for
#' any level of ploidy.\cr
#'
#' = TO GENLIGHT OBJECTS = \cr SNP data can be read from the following
#' formats:\cr - PLINK: see function \code{\link{read.PLINK}}\cr - .snp
#' (adegenet's own format): see function \code{\link{read.snp}}\cr
#'
#' SNP can also be extracted from aligned DNA sequences with the fasta format,
#' using \code{\link{fasta2genlight}}\cr
#'
#' === EXPORTING DATA ===\cr \code{adegenet} exports data from
#'
#' Genotypes can also be recoded from a \linkS4class{genind} object into a
#' data.frame of character strings, using any separator between alleles. This
#' covers formats from many softwares like GENETIX or STRUCTURE. For this, see
#' \code{\link{genind2df}}.\cr
#'
#' Also note that the \code{pegas} package imports \linkS4class{genind} objects
#' using the function \code{as.loci}.
#'
#' === MANIPULATING DATA ===\cr Several functions allow one to manipulate
#' \linkS4class{genind} or \linkS4class{genpop} objects\cr -
#' \code{\link{genind2genpop}}: convert a \linkS4class{genind} object to a
#' \linkS4class{genpop} \cr - \code{\link{seploc}}: creates one object per
#' marker; for \linkS4class{genlight} objects, creates blocks of SNPs.\cr -
#' \code{\link{seppop}}: creates one object per population \cr -
#' - \code{\link{tab}}: access the allele data (counts or frequencies) of an object
#' (\linkS4class{genind} and \linkS4class{genpop}) \cr -
#' x[i,j]: create a new object keeping only genotypes (or populations) indexed
#' by 'i' and the alleles indexed by 'j'.\cr - \code{\link{makefreq}}: returns
#' a table of allelic frequencies from a \linkS4class{genpop} object.\cr -
#' \code{\link{repool}} merges genoptypes from different gene pools into one
#' single \linkS4class{genind} object.\cr - \code{\link{propTyped}} returns the
#' proportion of available (typed) data, by individual, population, and/or
#' locus.\cr - \code{\link{selPopSize}} subsets data, retaining only genotypes
#' from a population whose sample size is above a given level.\cr -
#' \code{\link{pop}} sets the population of a set of genotypes.\cr
#'
#' === ANALYZING DATA ===\cr Several functions allow to use usual, and less
#' usual analyses:\cr - \code{\link{HWE.test.genind}}: performs HWE test for all
#' populations and loci combinations \cr - \code{\link{dist.genpop}}: computes 5
#' genetic distances among populations.  \cr - \code{\link{monmonier}}:
#' implementation of the Monmonier algorithm, used to seek genetic boundaries
#' among individuals or populations. Optimized boundaries can be obtained using
#' \code{\link{optimize.monmonier}}. Object of the class \code{monmonier} can be
#' plotted and printed using the corresponding methods. \cr -
#' \code{\link{spca}}: implements Jombart et al.  (2008) spatial Principal
#' Component Analysis \cr - \code{\link{global.rtest}}: implements Jombart et
#' al. (2008) test for global spatial structures \cr -
#' \code{\link{local.rtest}}: implements Jombart et al. (2008) test for local
#' spatial structures \cr - \code{\link{propShared}}: computes the proportion of
#' shared alleles in a set of genotypes (i.e. from a genind object)\cr -
#' \code{\link{propTyped}}: function to investigate missing data in several ways
#' \cr - \code{\link{scaleGen}}: generic method to scale \linkS4class{genind} or
#' \linkS4class{genpop} before a principal component analysis \cr -
#' \code{\link{Hs}}: computes the average expected heterozygosity by population
#' in a \linkS4class{genpop}. Classically Used as a measure of genetic
#' diversity.\cr - \code{\link{find.clusters}} and \code{\link{dapc}}: implement
#' the Discriminant Analysis of Principal Component (DAPC, Jombart et al.,
#' 2010).\cr - \code{\link{seqTrack}}: implements the SeqTrack algorithm for
#' recontructing transmission trees of pathogens (Jombart et al., 2010) .\cr
#' \code{\link{glPca}}: implements PCA for \linkS4class{genlight} objects.\cr -
#' \code{\link{gengraph}}: implements some simple graph-based clustering using
#' genetic data.  - \code{\link{snpposi.plot}} and \code{\link{snpposi.test}}:
#' visualize the distribution of SNPs on a genetic sequence and test their
#' randomness.  - \code{\link{adegenetServer}}: opens up a web interface for
#' some functionalities of the package (DAPC with cross validation and feature
#' selection).\cr
#'
#' === GRAPHICS ===\cr - \code{\link{colorplot}}: plots points with associated
#' values for up to three variables represented by colors using the RGB system;
#' useful for spatial mapping of principal components.\cr -
#' \code{\link{loadingplot}}: plots loadings of variables. Useful for
#' representing the contribution of alleles to a given principal component in a
#' multivariate method. \cr - \code{\link{scatter.dapc}}: scatterplots for DAPC
#' results.\cr - \code{\link{compoplot}}: plots membership probabilities from a
#' DAPC object. \cr
#'
#' === SIMULATING DATA ===\cr - \code{\link{hybridize}}: implements
#' hybridization between two populations. \cr - \code{\link{haploGen}}:
#' simulates genealogies of haplotypes, storing full genomes. \cr
#' \code{\link{glSim}}: simulates simple \linkS4class{genlight} objects.\cr
#'
#' === DATASETS ===\cr - \code{\link{H3N2}}: Seasonal influenza (H3N2) HA
#' segment data. \cr - \code{\link{dapcIllus}}: Simulated data illustrating the
#' DAPC. \cr - \code{\link{eHGDP}}: Extended HGDP-CEPH dataset. \cr -
#' \code{\link{microbov}}: Microsatellites genotypes of 15 cattle breeds. \cr -
#' \code{\link{nancycats}}: Microsatellites genotypes of 237 cats from 17
#' colonies of Nancy (France). \cr - \code{\link{rupica}}: Microsatellites
#' genotypes of 335 chamois (Rupicapra rupicapra) from the Bauges mountains
#' (France).\cr - \code{\link{sim2pop}}: Simulated genotypes of two
#' georeferenced populations.\cr - \code{\link{spcaIllus}}: Simulated data
#' illustrating the sPCA. \cr
#'
#' For more information, visit the adegenet website using the function
#' \code{\link{adegenetWeb}}.\cr
#'
#' Tutorials are available via the command \code{adegenetTutorial}.\cr
#'
#' To cite adegenet, please use the reference given by
#' \code{citation("adegenet")} (or see references below).
#'
#' @name adegenet.package
#' @encoding utf-8
#' @aliases adegenet.package adegenet
#' @docType package
#' @author Thibaut Jombart <t.jombart@@imperial.ac.uk>\cr
#' Developers: Zhian N. Kamvar <zkamvar@@gmail.com>,
#' Caitlin Collins <caitiecollins17@@gmail.com>,
#' Ismail Ahmed <ismail.ahmed@@inserm.fr>,
#' Federico Calboli, Tobias Erik Reiners, Peter
#' Solymos, Anne Cori, \cr Contributed datasets from: Katayoun
#' Moazami-Goudarzi, Denis Laloƫ, Dominique Pontier, Daniel Maillard, Francois
#' Balloux.
#' @seealso adegenet is related to several packages, in particular:\cr -
#' \code{ade4} for multivariate analysis\cr - \code{pegas} for population
#' genetics tools\cr - \code{ape} for phylogenetics and DNA data handling\cr -
#' \code{seqinr} for handling nucleic and proteic sequences\cr - \code{shiny}
#' for R-based web interfaces\cr
#' @references Jombart T. (2008) adegenet: a R package for the multivariate
#' analysis of genetic markers \emph{Bioinformatics} 24: 1403-1405. doi:
#' 10.1093/bioinformatics/btn129\cr
#'
#' Jombart T. and Ahmed I. (2011) adegenet 1.3-1: new tools for the analysis of
#' genome-wide SNP data.  \emph{Bioinformatics}. doi:
#' 10.1093/bioinformatics/btr521
#'
#' Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of
#' principal components: a new method for the analysis of genetically
#' structured populations. BMC Genetics 11:94.  doi:10.1186/1471-2156-11-94\cr
#'
#' Jombart T, Eggo R, Dodd P, Balloux F (2010) Reconstructing disease outbreaks
#' from genetic data: a graph approach. \emph{Heredity}. doi:
#' 10.1038/hdy.2010.78.\cr
#'
#' Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. (2008) Revealing
#' cryptic spatial patterns in genetic variability by a new multivariate
#' method. \emph{Heredity}, \bold{101}, 92--103.\cr
#'
#' See adegenet website: \url{http://adegenet.r-forge.r-project.org/}\cr
#'
#' Please post your questions on 'the adegenet forum':
#' adegenet-forum@@lists.r-forge.r-project.org
#' @keywords manip multivariate
#'
#' @exportPattern "^[^\\.]"
#'
#' @export .rmspaces .readExt .genlab .render.server.info
#'
#' @import methods
#'
#' @import parallel
#'
#' @import utils
#'
#' @import stats
#'
#' @import graphics
#'
#' @import grDevices
#'
#' @import ade4
#'
#' @importFrom seqinr s2c
#'
#' @importFrom MASS "lda"
#'
#' @importFrom ape "as.character.DNAbin" "as.DNAbin" "as.DNAbin.alignment"
#' "as.DNAbin.character" "as.DNAbin.list" "as.list.DNAbin" "as.matrix.DNAbin"
#' "cbind.DNAbin" "c.DNAbin" "[.DNAbin" "labels.DNAbin" "print.DNAbin"
#' "rbind.DNAbin" "dist.dna" "seg.sites"
#'
#' @importFrom igraph "graph.data.frame" "V" "V<-" "E" "E<-"
#' "layout.fruchterman.reingold" "as.igraph" "plot.igraph" "print.igraph"
#' "graph.adjacency" "clusters"
#'
#' @importFrom shiny "runApp" "renderPrint"
#'
#' @importFrom ggplot2 "ggplot" "geom_density" "geom_rug" "labs" "aes" "xlim"
#' "guides" "guide_legend" "geom_boxplot" "geom_violin" "geom_jitter"
#' "coord_flip"
#'
#' @useDynLib adegenet, .registration = TRUE
#'


NULL

Try the adegenet package in your browser

Any scripts or data that you put into this service are public.

adegenet documentation built on Feb. 16, 2023, 6 p.m.