Nothing
#' The adegenet package
#'
#'
#' This package is devoted to the multivariate analysis of genetic markers
#' data. These data can be codominant markers (e.g. microsatellites) or
#' presence/absence data (e.g. AFLP), and have any level of ploidy. 'adegenet'
#' defines three formal (S4) classes:\cr - \linkS4class{genind}: a class for
#' data of individuals ("genind" stands for genotypes-individuals).\cr -
#' \linkS4class{genpop}: a class for data of groups of individuals ("genpop"
#' stands for genotypes-populations)\cr - \linkS4class{genlight}: a class for
#' genome-wide SNP data\cr
#'
#' For more information about these classes, type "class ? genind", "class ?
#' genpop", or "?genlight".\cr
#'
#' Essential functionalities of the package are presented througout 4
#' tutorials, accessible using \code{adegenetTutorial(which="name-below")}:\cr
#' - \code{basics}: introduction to the package.\cr - \code{spca}: multivariate
#' analysis of spatial genetic patterns.\cr - \code{dapc}: population structure
#' and group assignment using DAPC.\cr - \code{genomics}: introduction to the
#' class \linkS4class{genlight} for the handling and analysis of genome-wide
#' SNP data.\cr
#'
#' Note: In older versions of adegenet, these tutorials were avilable as
#' vignettes, accessible through the function \code{vignette("name-below",
#' package="adegenet")}:\cr - \code{adegenet-basics}.\cr -
#' \code{adegenet-spca}.\cr - \code{adegenet-dapc}.\cr -
#' \code{adegenet-genomics}.\cr
#'
#' Important functions are also summarized below.\cr
#'
#' === IMPORTING DATA ===\cr = TO GENIND OBJECTS = \cr \code{adegenet} imports
#' data to \linkS4class{genind} object from the following softwares:\cr -
#' STRUCTURE: see \code{\link{read.structure}}\cr - GENETIX: see
#' \code{\link{read.genetix}}\cr - FSTAT: see \code{\link{read.fstat}}\cr -
#' Genepop: see \code{\link{read.genepop}}\cr To import data from any of these
#' formats, you can also use the general function
#' \code{\link{import2genind}}.\cr
#'
#' In addition, it can extract polymorphic sites from nucleotide and amino-acid
#' alignments:\cr - DNA files: use \code{\link[ape]{read.dna}} from the ape
#' package, and then extract SNPs from DNA alignments using
#' \code{\link{DNAbin2genind}}. \cr
#'
#' - protein sequences alignments: polymorphic sites can be extracted from
#' protein sequences alignments in \code{alignment} format (package
#' \code{seqinr}, see \code{\link[seqinr]{as.alignment}}) using the function
#' \code{\link{alignment2genind}}. \cr
#'
#' The function \code{\link{fasta2DNAbin}} allows for reading fasta files into
#' DNAbin object with minimum RAM requirements.\cr
#'
#' It is also possible to read genotypes coded by character strings from a
#' data.frame in which genotypes are in rows, markers in columns. For this, use
#' \code{\link{df2genind}}. Note that \code{\link{df2genind}} can be used for
#' any level of ploidy.\cr
#'
#' = TO GENLIGHT OBJECTS = \cr SNP data can be read from the following
#' formats:\cr - PLINK: see function \code{\link{read.PLINK}}\cr - .snp
#' (adegenet's own format): see function \code{\link{read.snp}}\cr
#'
#' SNP can also be extracted from aligned DNA sequences with the fasta format,
#' using \code{\link{fasta2genlight}}\cr
#'
#' === EXPORTING DATA ===\cr \code{adegenet} exports data from
#'
#' Genotypes can also be recoded from a \linkS4class{genind} object into a
#' data.frame of character strings, using any separator between alleles. This
#' covers formats from many softwares like GENETIX or STRUCTURE. For this, see
#' \code{\link{genind2df}}.\cr
#'
#' Also note that the \code{pegas} package imports \linkS4class{genind} objects
#' using the function \code{as.loci}.
#'
#' === MANIPULATING DATA ===\cr Several functions allow one to manipulate
#' \linkS4class{genind} or \linkS4class{genpop} objects\cr -
#' \code{\link{genind2genpop}}: convert a \linkS4class{genind} object to a
#' \linkS4class{genpop} \cr - \code{\link{seploc}}: creates one object per
#' marker; for \linkS4class{genlight} objects, creates blocks of SNPs.\cr -
#' \code{\link{seppop}}: creates one object per population \cr -
#' - \code{\link{tab}}: access the allele data (counts or frequencies) of an object
#' (\linkS4class{genind} and \linkS4class{genpop}) \cr -
#' x[i,j]: create a new object keeping only genotypes (or populations) indexed
#' by 'i' and the alleles indexed by 'j'.\cr - \code{\link{makefreq}}: returns
#' a table of allelic frequencies from a \linkS4class{genpop} object.\cr -
#' \code{\link{repool}} merges genoptypes from different gene pools into one
#' single \linkS4class{genind} object.\cr - \code{\link{propTyped}} returns the
#' proportion of available (typed) data, by individual, population, and/or
#' locus.\cr - \code{\link{selPopSize}} subsets data, retaining only genotypes
#' from a population whose sample size is above a given level.\cr -
#' \code{\link{pop}} sets the population of a set of genotypes.\cr
#'
#' === ANALYZING DATA ===\cr Several functions allow to use usual, and less
#' usual analyses:\cr - \code{\link{HWE.test.genind}}: performs HWE test for all
#' populations and loci combinations \cr - \code{\link{dist.genpop}}: computes 5
#' genetic distances among populations. \cr - \code{\link{monmonier}}:
#' implementation of the Monmonier algorithm, used to seek genetic boundaries
#' among individuals or populations. Optimized boundaries can be obtained using
#' \code{\link{optimize.monmonier}}. Object of the class \code{monmonier} can be
#' plotted and printed using the corresponding methods. \cr -
#' \code{\link{spca}}: implements Jombart et al. (2008) spatial Principal
#' Component Analysis \cr - \code{\link{global.rtest}}: implements Jombart et
#' al. (2008) test for global spatial structures \cr -
#' \code{\link{local.rtest}}: implements Jombart et al. (2008) test for local
#' spatial structures \cr - \code{\link{propShared}}: computes the proportion of
#' shared alleles in a set of genotypes (i.e. from a genind object)\cr -
#' \code{\link{propTyped}}: function to investigate missing data in several ways
#' \cr - \code{\link{scaleGen}}: generic method to scale \linkS4class{genind} or
#' \linkS4class{genpop} before a principal component analysis \cr -
#' \code{\link{Hs}}: computes the average expected heterozygosity by population
#' in a \linkS4class{genpop}. Classically Used as a measure of genetic
#' diversity.\cr - \code{\link{find.clusters}} and \code{\link{dapc}}: implement
#' the Discriminant Analysis of Principal Component (DAPC, Jombart et al.,
#' 2010).\cr - \code{\link{seqTrack}}: implements the SeqTrack algorithm for
#' recontructing transmission trees of pathogens (Jombart et al., 2010) .\cr
#' \code{\link{glPca}}: implements PCA for \linkS4class{genlight} objects.\cr -
#' \code{\link{gengraph}}: implements some simple graph-based clustering using
#' genetic data. - \code{\link{snpposi.plot}} and \code{\link{snpposi.test}}:
#' visualize the distribution of SNPs on a genetic sequence and test their
#' randomness. - \code{\link{adegenetServer}}: opens up a web interface for
#' some functionalities of the package (DAPC with cross validation and feature
#' selection).\cr
#'
#' === GRAPHICS ===\cr - \code{\link{colorplot}}: plots points with associated
#' values for up to three variables represented by colors using the RGB system;
#' useful for spatial mapping of principal components.\cr -
#' \code{\link{loadingplot}}: plots loadings of variables. Useful for
#' representing the contribution of alleles to a given principal component in a
#' multivariate method. \cr - \code{\link{scatter.dapc}}: scatterplots for DAPC
#' results.\cr - \code{\link{compoplot}}: plots membership probabilities from a
#' DAPC object. \cr
#'
#' === SIMULATING DATA ===\cr - \code{\link{hybridize}}: implements
#' hybridization between two populations. \cr - \code{\link{haploGen}}:
#' simulates genealogies of haplotypes, storing full genomes. \cr
#' \code{\link{glSim}}: simulates simple \linkS4class{genlight} objects.\cr
#'
#' === DATASETS ===\cr - \code{\link{H3N2}}: Seasonal influenza (H3N2) HA
#' segment data. \cr - \code{\link{dapcIllus}}: Simulated data illustrating the
#' DAPC. \cr - \code{\link{eHGDP}}: Extended HGDP-CEPH dataset. \cr -
#' \code{\link{microbov}}: Microsatellites genotypes of 15 cattle breeds. \cr -
#' \code{\link{nancycats}}: Microsatellites genotypes of 237 cats from 17
#' colonies of Nancy (France). \cr - \code{\link{rupica}}: Microsatellites
#' genotypes of 335 chamois (Rupicapra rupicapra) from the Bauges mountains
#' (France).\cr - \code{\link{sim2pop}}: Simulated genotypes of two
#' georeferenced populations.\cr - \code{\link{spcaIllus}}: Simulated data
#' illustrating the sPCA. \cr
#'
#' For more information, visit the adegenet website using the function
#' \code{\link{adegenetWeb}}.\cr
#'
#' Tutorials are available via the command \code{adegenetTutorial}.\cr
#'
#' To cite adegenet, please use the reference given by
#' \code{citation("adegenet")} (or see references below).
#'
#' @name adegenet.package
#' @encoding utf-8
#' @aliases adegenet.package adegenet
#' @docType package
#' @author Thibaut Jombart <t.jombart@@imperial.ac.uk>\cr
#' Developers: Zhian N. Kamvar <zkamvar@@gmail.com>,
#' Caitlin Collins <caitiecollins17@@gmail.com>,
#' Ismail Ahmed <ismail.ahmed@@inserm.fr>,
#' Federico Calboli, Tobias Erik Reiners, Peter
#' Solymos, Anne Cori, \cr Contributed datasets from: Katayoun
#' Moazami-Goudarzi, Denis Laloƫ, Dominique Pontier, Daniel Maillard, Francois
#' Balloux.
#' @seealso adegenet is related to several packages, in particular:\cr -
#' \code{ade4} for multivariate analysis\cr - \code{pegas} for population
#' genetics tools\cr - \code{ape} for phylogenetics and DNA data handling\cr -
#' \code{seqinr} for handling nucleic and proteic sequences\cr - \code{shiny}
#' for R-based web interfaces\cr
#' @references Jombart T. (2008) adegenet: a R package for the multivariate
#' analysis of genetic markers \emph{Bioinformatics} 24: 1403-1405. doi:
#' 10.1093/bioinformatics/btn129\cr
#'
#' Jombart T. and Ahmed I. (2011) adegenet 1.3-1: new tools for the analysis of
#' genome-wide SNP data. \emph{Bioinformatics}. doi:
#' 10.1093/bioinformatics/btr521
#'
#' Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of
#' principal components: a new method for the analysis of genetically
#' structured populations. BMC Genetics 11:94. doi:10.1186/1471-2156-11-94\cr
#'
#' Jombart T, Eggo R, Dodd P, Balloux F (2010) Reconstructing disease outbreaks
#' from genetic data: a graph approach. \emph{Heredity}. doi:
#' 10.1038/hdy.2010.78.\cr
#'
#' Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. (2008) Revealing
#' cryptic spatial patterns in genetic variability by a new multivariate
#' method. \emph{Heredity}, \bold{101}, 92--103.\cr
#'
#' See adegenet website: \url{http://adegenet.r-forge.r-project.org/}\cr
#'
#' Please post your questions on 'the adegenet forum':
#' adegenet-forum@@lists.r-forge.r-project.org
#' @keywords manip multivariate
#'
#' @exportPattern "^[^\\.]"
#'
#' @export .rmspaces .readExt .genlab .render.server.info
#'
#' @import methods
#'
#' @import parallel
#'
#' @import utils
#'
#' @import stats
#'
#' @import graphics
#'
#' @import grDevices
#'
#' @import ade4
#'
#' @importFrom seqinr s2c
#'
#' @importFrom MASS "lda"
#'
#' @importFrom ape "as.character.DNAbin" "as.DNAbin" "as.DNAbin.alignment"
#' "as.DNAbin.character" "as.DNAbin.list" "as.list.DNAbin" "as.matrix.DNAbin"
#' "cbind.DNAbin" "c.DNAbin" "[.DNAbin" "labels.DNAbin" "print.DNAbin"
#' "rbind.DNAbin" "dist.dna" "seg.sites"
#'
#' @importFrom igraph "graph.data.frame" "V" "V<-" "E" "E<-"
#' "layout.fruchterman.reingold" "as.igraph" "plot.igraph" "print.igraph"
#' "graph.adjacency" "clusters"
#'
#' @importFrom shiny "runApp" "renderPrint"
#'
#' @importFrom ggplot2 "ggplot" "geom_density" "geom_rug" "labs" "aes" "xlim"
#' "guides" "guide_legend" "geom_boxplot" "geom_violin" "geom_jitter"
#' "coord_flip"
#'
#' @useDynLib adegenet, .registration = TRUE
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.