Nothing
datadist <- Normal(two_armed = FALSE)
H_0 <- PointMassPrior(.0, 1)
H_1 <- PointMassPrior(.4, 1)
H_01 <- PointMassPrior(c(0, .4), c(.5, .5))
ess <- ExpectedSampleSize(datadist, H_0)
toer <- Power(datadist, H_0)
power <- Power(datadist, H_1)
cp <- ConditionalPower(datadist, H_1)
initial_ad <- get_initial_design(
theta = .4,
alpha = .025,
beta = .2,
type_design = "two-stage",
dist = datadist,
type_n2 = "linear_increasing"
)
optad <- minimize(
ess,
subject_to(
power >= 0.8,
toer <= .025
),
initial_ad
# opts = list(algorithm = "NLOPT_LN_COBYLA", xtol_rel = 1e-06, maxeval = 40000)
)
plot(optad$design)
design <- adestr:::cache_design_splines(optad$design)
stagewise_estimators <- get_stagewise_estimators(estimator = NeymanPearsonOrderingPValue(0, 0.4),
data_distribution = datadist,
use_full_twoarm_sampling_distribution = FALSE,
design = design, sigma = 1, exact = FALSE)
p1 <- stagewise_estimators[[1L]]
p2 <- stagewise_estimators[[2L]]
implied_c2(design, seq(design@c1f, design@c1e, .1), p2, 1, FALSE, 0.025) -
c2(design, seq(design@c1f, design@c1e, .1))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.