Nothing
#' Add New Records Within By Groups Using Aggregation Functions
#'
#' @description
#' It is not uncommon to have an analysis need whereby one needs to derive an
#' analysis value (`AVAL`) from multiple records. The ADaM basic dataset
#' structure variable `DTYPE` is available to indicate when a new derived
#' records has been added to a dataset.
#'
#' @details
#' When all records have same values within `by_vars` then this function will
#' retain those common values in the newly derived records. Otherwise new value
#' will be set to `NA`.
#'
#' @param dataset `r roxygen_param_dataset(expected_vars = c("by_vars"))`
#'
#' @param dataset_add Additional dataset
#'
#' The variables specified for `by_vars` are expected.
#' Observations from the specified dataset are going to be used to calculate and added
#' as new records to the input dataset (`dataset`).
#'
#' @param dataset_ref Reference dataset
#'
#' The variables specified for `by_vars` are expected. For each
#' observation of the specified dataset a new observation is added to the
#' input dataset.
#'
#' @param by_vars Grouping variables
#'
#' Variables to consider for generation of groupwise summary
#' records. Providing the names of variables in [exprs()] will create a
#' groupwise summary and generate summary records for the specified groups.
#'
#' `r roxygen_param_by_vars()`
#'
#' @param filter
#'
#' `r lifecycle::badge("deprecated")` Please use `filter_add` instead.
#'
#' Filter condition as logical expression to apply during
#' summary calculation. By default, filtering expressions are computed within
#' `by_vars` as this will help when an aggregating, lagging, or ranking
#' function is involved.
#'
#' For example,
#'
#' + `filter = (AVAL > mean(AVAL, na.rm = TRUE))` will filter all `AVAL`
#' values greater than mean of `AVAL` with in `by_vars`.
#' + `filter = (dplyr::n() > 2)` will filter n count of `by_vars` greater
#' than 2.
#'
#' @param filter_add Filter condition as logical expression to apply during
#' summary calculation. By default, filtering expressions are computed within
#' `by_vars` as this will help when an aggregating, lagging, or ranking
#' function is involved.
#'
#' For example,
#'
#' + `filter_add = (AVAL > mean(AVAL, na.rm = TRUE))` will filter all `AVAL`
#' values greater than mean of `AVAL` with in `by_vars`.
#' + `filter_add = (dplyr::n() > 2)` will filter n count of `by_vars` greater
#' than 2.
#'
#' @param set_values_to Variables to be set
#'
#' The specified variables are set to the specified values for the new
#' observations.
#'
#' Set a list of variables to some specified value for the new records
#' + LHS refer to a variable.
#' + RHS refers to the values to set to the variable. This can be a string, a
#' symbol, a numeric value, an expression or NA. If summary functions are
#' used, the values are summarized by the variables specified for `by_vars`.
#'
#' For example:
#' ```
#' set_values_to = exprs(
#' AVAL = sum(AVAL),
#' DTYPE = "AVERAGE",
#' )
#' ```
#'
#' @param missing_values Values for missing summary values
#'
#' For observations of the reference dataset (`dataset_ref`) which do not have a
#' complete mapping defined by the summarization defined in `set_values_to`. Only variables
#' specified for `set_values_to` can be specified for `missing_values`.
#'
#' *Permitted Values*: named list of expressions, e.g.,
#' `exprs(AVAL = -9999)`
#'
#' @inheritParams get_summary_records
#'
#' @return A data frame with derived records appended to original dataset.
#'
#' @family der_prm_bds_findings
#' @keywords der_prm_bds_findings
#'
#' @seealso [get_summary_records()], [derive_var_merged_summary()]
#'
#' @export
#'
#' @examples
#' library(tibble)
#' library(dplyr)
#'
#' adeg <- tribble(
#' ~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
#' "XYZ-1001", 1, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:50", 385, NA_character_,
#' "XYZ-1001", 2, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:52", 399, NA_character_,
#' "XYZ-1001", 3, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:56", 396, NA_character_,
#' "XYZ-1001", 4, "QTcF Int. (msec)", "Visit 2", "2016-03-08T09:45", 384, "Placebo",
#' "XYZ-1001", 5, "QTcF Int. (msec)", "Visit 2", "2016-03-08T09:48", 393, "Placebo",
#' "XYZ-1001", 6, "QTcF Int. (msec)", "Visit 2", "2016-03-08T09:51", 388, "Placebo",
#' "XYZ-1001", 7, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:45", 385, "Placebo",
#' "XYZ-1001", 8, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:48", 394, "Placebo",
#' "XYZ-1001", 9, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:51", 402, "Placebo",
#' "XYZ-1002", 1, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 399, NA_character_,
#' "XYZ-1002", 2, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 410, NA_character_,
#' "XYZ-1002", 3, "QTcF Int. (msec)", "Baseline", "2016-02-22T08:01", 392, NA_character_,
#' "XYZ-1002", 4, "QTcF Int. (msec)", "Visit 2", "2016-03-06T09:50", 401, "Active 20mg",
#' "XYZ-1002", 5, "QTcF Int. (msec)", "Visit 2", "2016-03-06T09:53", 407, "Active 20mg",
#' "XYZ-1002", 6, "QTcF Int. (msec)", "Visit 2", "2016-03-06T09:56", 400, "Active 20mg",
#' "XYZ-1002", 7, "QTcF Int. (msec)", "Visit 3", "2016-03-24T10:50", 412, "Active 20mg",
#' "XYZ-1002", 8, "QTcF Int. (msec)", "Visit 3", "2016-03-24T10:53", 414, "Active 20mg",
#' "XYZ-1002", 9, "QTcF Int. (msec)", "Visit 3", "2016-03-24T10:56", 402, "Active 20mg"
#' ) %>%
#' mutate(
#' ADTM = convert_dtc_to_dtm(EGDTC)
#' )
#'
#' # Summarize the average of the triplicate ECG interval values (AVAL)
#' derive_summary_records(
#' adeg,
#' dataset_add = adeg,
#' by_vars = exprs(USUBJID, PARAM, AVISIT),
#' set_values_to = exprs(
#' AVAL = mean(AVAL, na.rm = TRUE),
#' DTYPE = "AVERAGE"
#' )
#' ) %>%
#' arrange(USUBJID, AVISIT)
#'
#' # Derive more than one summary variable
#' derive_summary_records(
#' adeg,
#' dataset_add = adeg,
#' by_vars = exprs(USUBJID, PARAM, AVISIT),
#' set_values_to = exprs(
#' AVAL = mean(AVAL),
#' ADTM = max(ADTM),
#' DTYPE = "AVERAGE"
#' )
#' ) %>%
#' arrange(USUBJID, AVISIT) %>%
#' select(-EGSEQ, -TRTA)
#'
#' # Sample ADEG dataset with triplicate record for only AVISIT = 'Baseline'
#' adeg <- tribble(
#' ~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
#' "XYZ-1001", 1, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:50", 385, NA_character_,
#' "XYZ-1001", 2, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:52", 399, NA_character_,
#' "XYZ-1001", 3, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:56", 396, NA_character_,
#' "XYZ-1001", 4, "QTcF Int. (msec)", "Visit 2", "2016-03-08T09:48", 393, "Placebo",
#' "XYZ-1001", 5, "QTcF Int. (msec)", "Visit 2", "2016-03-08T09:51", 388, "Placebo",
#' "XYZ-1001", 6, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:48", 394, "Placebo",
#' "XYZ-1001", 7, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:51", 402, "Placebo",
#' "XYZ-1002", 1, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 399, NA_character_,
#' "XYZ-1002", 2, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 410, NA_character_,
#' "XYZ-1002", 3, "QTcF Int. (msec)", "Baseline", "2016-02-22T08:01", 392, NA_character_,
#' "XYZ-1002", 4, "QTcF Int. (msec)", "Visit 2", "2016-03-06T09:53", 407, "Active 20mg",
#' "XYZ-1002", 5, "QTcF Int. (msec)", "Visit 2", "2016-03-06T09:56", 400, "Active 20mg",
#' "XYZ-1002", 6, "QTcF Int. (msec)", "Visit 3", "2016-03-24T10:53", 414, "Active 20mg",
#' "XYZ-1002", 7, "QTcF Int. (msec)", "Visit 3", "2016-03-24T10:56", 402, "Active 20mg"
#' )
#'
#' # Compute the average of AVAL only if there are more than 2 records within the
#' # by group
#' derive_summary_records(
#' adeg,
#' dataset_add = adeg,
#' by_vars = exprs(USUBJID, PARAM, AVISIT),
#' filter_add = n() > 2,
#' set_values_to = exprs(
#' AVAL = mean(AVAL, na.rm = TRUE),
#' DTYPE = "AVERAGE"
#' )
#' ) %>%
#' arrange(USUBJID, AVISIT)
derive_summary_records <- function(dataset = NULL,
dataset_add,
dataset_ref = NULL,
by_vars,
filter = NULL,
filter_add = NULL,
analysis_var,
summary_fun,
set_values_to,
missing_values = NULL) {
assert_vars(by_vars)
assert_data_frame(dataset, required_vars = by_vars, optional = TRUE)
assert_data_frame(dataset_add, required_vars = by_vars)
assert_data_frame(
dataset_ref,
required_vars = by_vars,
optional = TRUE
)
assert_varval_list(set_values_to)
assert_expr_list(missing_values, named = TRUE, optional = TRUE)
if (!missing(analysis_var) || !missing(summary_fun)) {
deprecate_stop(
"1.1.0",
I("derive_summary_records(anaylsis_var = , summary_fun = )"),
"derive_summary_records(set_values_to = )"
)
analysis_var <- assert_symbol(enexpr(analysis_var))
assert_s3_class(summary_fun, "function")
set_values_to <- exprs(!!analysis_var := {{ summary_fun }}(!!analysis_var), !!!set_values_to)
}
if (!missing(filter)) {
deprecate_stop(
"1.1.0",
I("derive_summary_records(filter = )"),
"derive_summary_records(filter_add = )"
)
filter_add <- assert_filter_cond(enexpr(filter), optional = TRUE)
}
filter_add <- assert_filter_cond(enexpr(filter_add), optional = TRUE)
summary_records <- dataset_add %>%
group_by(!!!by_vars) %>%
filter_if(filter_add) %>%
summarise(!!!set_values_to) %>%
ungroup()
df_return <- bind_rows(
dataset,
summary_records
)
if (!is.null(dataset_ref)) {
add_vars <- colnames(dataset_add)
ref_vars <- colnames(dataset_ref)
new_ref_obs <- anti_join(
select(dataset_ref, intersect(add_vars, ref_vars)),
select(summary_records, !!!by_vars),
by = map_chr(by_vars, as_name)
)
if (!is.null(missing_values)) {
new_ref_obs <- new_ref_obs %>%
mutate(!!!missing_values)
}
df_return <- bind_rows(
df_return,
new_ref_obs
)
}
df_return
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.