Nothing
#' 2AFC For Ordinal Polychotomous Observations And Ensemble Forecasts
#'
#' Routine to calculate the Generalized Discrimination Score (aka
#' Two-Alternatives Forced Choice Score 2AFC) for the situation of
#' polychotomous observations (ordinal) and ensemble forecasts
#'
#' This routine first ranks the ensemble forecasts (see
#' \code{\link{rank.ensembles}}) and then calculates the 2AFC-score with Eq.18
#' of Mason and Weigel (2009).
#'
#' @param obsv vector with polychotomous observations (values in {1,..,m})
#' @param fcst two-dimensional array with ensemble forecasts; dim(fcst)[1] =
#' length(obsv); dim(fcst)[2] = ensemble size
#' @param m number of observation categories (default = 3)
#' @return \item{ p.afc }{ Value of Generalized Discrimination (2AFC) Score }
#' @author Andreas Weigel, Federal Office of Meteorology and Climatology,
#' MeteoSwiss, Zurich, Switzerland
#' @seealso \code{\link{afc}} \code{\link{rank.ensembles}}
#' @references S.J. Mason and A.P. Weigel, 2009. A generic verification
#' framework for administrative purposes. Mon. Wea. Rev., 137, 331-349
#' @keywords file
#' @examples
#'
#' #Forecasts and observations of Nino-3.4 index
#' #Load set of polychotomous observations (4 categories) and 9-member ensemble forecasts
#' data(cnrm.nino34.me)
#' obsv = cnrm.nino34.me$obsv
#' fcst = cnrm.nino34.me$fcst
#'
#' #Calculate skill score
#' afc.me(obsv,fcst,4)
#'
#' @export afc.me
afc.me = function(obsv,fcst,m=3){
#################################
# OBSV: POLYCHOTOMOUS (ORDINAL) #
# FCST: ENSEMBLE #
#################################
# input variables:
# ----------------
# m - Number of observation categories (default = 3)
# fcst - array(n,nens) of n ensemble forecasts with ensemble size nens
# obsv - vector with observation categories (1...m)
#
# output variable:
# ----------------
# p.afc - 2AFC skill score as obtained from MW09 Eq. 18 after ranking
# determine number of observations per category
n.vector = rep(NA,m)
for (k in 1:m){
n.vector[k] = length(which(obsv == k))
}
# calculate Eq. 18 in MW09
numer = 0
denom = 0
for (k in 1:(m-1)) for (l in (k+1):m){
# index for obsv of categories which are to be compared
index.event = which(obsv == k | obsv == l)
# Determine ranks of ensemble forecasts of event
fine.index = which(obsv[index.event] == l)
ranks = rank.ensembles(fcst[index.event,])[fine.index]
# Calculate inner sum in Eq. 18 of MW09
numer = numer + sum(ranks) - 0.5*n.vector[l]*(n.vector[l]+1)
denom = denom + n.vector[k]*n.vector[l]
}
p.afc = numer/denom
type.flag = 1
return(p.afc)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.