# example5: Example 5: Transformation of treatment levels to improve... In agriTutorial: Tutorial Analysis of Some Agricultural Experiments

## Description

Mead (1988, p. 323) describes an experiment on spacing effects with turnips, which was laid out in three complete blocks. Five different seed rates (0.5, 2, 8, 20, 32 lb/acre) were tested in combination with four different row widths (4, 8, 16, 32 inches), giving rise to a total of 20 treatments.

## Details

Transformation of the dependent variable will often stabilize the variance of the observations whereas transformation of the regressor variables will often simplify the fitted model. In this example, the fit of a regression model based on the original seed rate and row width variables is compared with the fit of a regression model based on the log transformed seed rates and log transformed row widths. In each case, the model lack-of-fit is examined by assessing the extra variability explained when the Density and Spacing treatment factors and their interactions are added to the quadratic regression models. All yields are logarithmically transformed to stabilize the variance.

The first analysis fits a quadratic regression model of log yields on the untransformed seed rates and row widths (Table 16) while the second analysis fits a quadratic regression model of log yields on the log transformed seed rates and log transformed row widths (Table 17). The analysis of variance of the first model shows that significant extra variability is explained by the Density and Spacing factors and this shows that a quadratic regression model is inadequate for the untransformed regressor variables. The analysis of variance of the second model, however, shows no significant extra variability explained by the Density and Spacing factors and this shows that the quadratic regression model with the log transformed regressor variables gives a good fit to the data and therefore is the preferred model for the observed data.

The superiority of the model with the log transformed regressor variables is confirmed by comparing the fit of the quadratic regression model for the untransformed regressor variables (Figs 8 and 9) versus the fit of the quadratic regression model for the log transformed regressor variables (Figs 10 and 11).

Fig 12a shows diagnostic plots for the fit of a quadratic model with untransformed regressor variables while Fig 12b shows corresponding diagnostic plots for the fit of a quadratic model with loge transformed regressor variables. Each of the four types of diagnostic plots in the two figures shows an improvement in fit for the transformed versus the untransformed regressor variables.

`agriTutorial`: return to home page if you want to select a different example

## References

Mead, R. (1988). The design of experiments. Statistical principles for practical application. Cambridge: Cambridge University Press.

Piepho, H. P, and Edmondson. R. N. (2018). A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and Crop Science. DOI: 10.1111/jac.12267. View

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137``` ```## ************************************************************************************* ## How to run the code ## ************************************************************************************* ## Either type example("example5") to run ALL the examples succesively ## or copy and paste examples sucessively, as required ## ************************************************************************************* ## Options and required packages ## ************************************************************************************* options(contrasts = c('contr.treatment', 'contr.poly')) require(lattice) ## ************************************************************************************* ## Quadratic regression models with and without transformation of regressor variables ## ************************************************************************************* RowSpacing = poly(turnip\$rowspacing, 3, raw = TRUE) colnames(RowSpacing) = c("linSpacing", "quadSpacing", "cubSpacing") Density = poly(turnip\$density, 4, raw = TRUE) colnames(Density) = c("linDensity", "quadDensity", "cubDensity", "quartDensity") turnip = cbind(turnip, Density, RowSpacing) ## Log transformed row spacing and density polynomials logRowSpacing = poly(log(turnip\$rowspacing), 3, raw = TRUE) colnames(logRowSpacing) = c("linlogSpacing", "quadlogSpacing", "cublogSpacing") logDensity = poly(log(turnip\$density), 4, raw = TRUE) colnames(logDensity) = c("linlogDensity", "quadlogDensity", "cublogDensity", "quartlogDensity") turnip = cbind(turnip, logDensity, logRowSpacing) ## Table 16 Quadratic response surface for untransformed planting density by row spacing model quad.mod = lm(log_yield ~ Replicate + linDensity * linSpacing + quadDensity + quadSpacing + Density * Spacing, turnip) anova(quad.mod) ## Table 17 Quadratic response surface for transformed log planting density by log row spacing log.quad.mod = lm(log_yield ~ Replicate + linlogDensity * linlogSpacing + quadlogDensity + quadlogSpacing + Density * Spacing, turnip) anova(log.quad.mod) ## ************************************************************************************* ## Quadratic regression model plots with and without transformations ## Averaged over replicate blocks to give mean of block effects ## ************************************************************************************* ## Quadratic response surface for untransformed planting density by row spacing model quad.mod = lm(log_yield ~ linDensity * linSpacing + quadDensity + quadSpacing , turnip) quad.mod\$coefficients ## Fig 8 Plot of loge yield (lb/plot) versus row width panel.plot = function(x, y) { panel.xyplot(x, y) # lattice plot shows observed points SeedDensity = c(0.5,2,8,20,32)[panel.number()] panel.curve(1.1146900855 + 0.0284788787 * x -0.0007748656 * x * x + 0.1564753713 *SeedDensity - 0.0033192569 * SeedDensity* SeedDensity -0.0006749985 * x * SeedDensity, from = 4, to = 32.0, type = "l", lwd = 2) } Seed_Rate=factor(turnip\$linDensity) xyplot(log_yield ~ linSpacing|Seed_Rate, data = turnip, scales = list(x = list(at = c(10,20,30), labels = c(10,20,30))), main = "Fig 8: loge yield versus row width", xlab = " Row Width ", ylab = "Loge yield ", strip = strip.custom(strip.names = TRUE, factor.levels = c("0.5", "2", "8", "20", "32")), panel = panel.plot) ## Fig 9 Plot of loge yield (lb/plot) versus seed rate panel.plot = function(x, y) { panel.xyplot(x, y) # lattice plot shows observed points RowWidth = c(4, 8, 16, 32)[panel.number()] panel.curve(1.1146900855 + 0.1564753713 * x - 0.0033192569 * x * x + 0.0284788787 * RowWidth - 0.0007748656* RowWidth * RowWidth -0.0006749985 * x * RowWidth, from = 0.5, to = 32.0, type = "l", lwd = 2) } Row_Width=factor(turnip\$linSpacing) xyplot(log_yield ~ linDensity|Row_Width, data = turnip, scales = list(x = list(at = c(0,10,20,30), labels = c(0,10,20,30))), main = "Fig 9: loge yield versus seed rate", xlab = " Seed Rate", ylab = "Loge yield ", strip = strip.custom(strip.names = TRUE, factor.levels = c("4", "8", "16", "32")), panel = panel.plot) ## Quadratic response surface for log transformed planting density by log row spacing model log.quad.mod = lm(log_yield ~ linlogDensity * linlogSpacing + quadlogDensity + quadlogSpacing, turnip) log.quad.mod\$coefficients ## Fig 10 Plot of loge yield (lb/plot) versus log row width panel.plot = function(x, y) { panel.xyplot(x, y) # lattice plot shows observed points LogSeedDensity = c(-0.6931472,0.6931472,2.0794415,2.9957323,3.4657359)[panel.number()] panel.curve( 0.18414803 + 1.09137389 * x - 0.20987137 * x * x + 0.94207543 *LogSeedDensity - 0.10875560 * LogSeedDensity* LogSeedDensity -0.09440938 * x * LogSeedDensity, from = 1.35, to =3.50, type = "l", lwd = 2) } xyplot(log_yield ~ linlogSpacing|Seed_Rate, data = turnip, scales = list(x = list(at = c(1.5,2.0,2.5,3.0,3.5), labels = c(1.5,2.0,2.5,3.0,3.5))), main = "Fig 10: loge yield versus loge row width", xlab = " Loge Row Width ", ylab = "Loge yield ", strip = strip.custom(strip.names = TRUE, factor.levels = c("0.5", "2", "8", "20", "32")), panel = panel.plot) ## Fig 11 Plot of loge yield (lb/plot) versus log seed rate panel.plot = function(x, y) { panel.xyplot(x, y) # lattice plot shows observed points LogRowWidth = c(1.386294, 2.079442, 2.772589,3.465736)[panel.number()] panel.curve(0.18414803 + 0.94207543 * x -0.10875560 * x * x + 1.09137389* LogRowWidth - 0.20987137* LogRowWidth * LogRowWidth -0.09440938 * x * LogRowWidth, from = -0.7 , to = 3.5, type = "l", lwd = 2) } xyplot(log_yield ~ linlogDensity|Row_Width, data = turnip, scales = list(x = list(at = c(0,1,2,3),labels = c(0,1,2,3))), main = "Fig 11: loge yield versus loge seed rate", xlab = " Loge Seed Rate", ylab = "Loge yield ", strip = strip.custom(strip.names = TRUE, factor.levels = c("4", "8", "16", "32")), panel = panel.plot) ## ************************************************************************************* ## Quadratic regression model diagnostic plots with and without transformations ## ************************************************************************************* ## graphical plots of untransformed data par(mfrow = c(2, 2), oma = c(0, 0, 2, 0)) fit.quad.mod = lm(log_yield ~ linDensity * linSpacing + quadDensity + quadSpacing, turnip) plot(fit.quad.mod, sub.caption = NA) title(main = "Fig 12a Diagnostics for untransformed sowing density and row spacing", outer = TRUE) ## graphical plots of log transformed data par(mfrow = c(2, 2), oma = c(0, 0, 2, 0)) fit.log.quad.mod = lm(log_yield ~ linlogDensity * linlogSpacing + quadlogDensity + quadlogSpacing, turnip) plot(fit.log.quad.mod, sub.caption = NA) title(main = "Fig 12b Diagnostics for log transformed sowing density and row spacing", outer = TRUE) ```

agriTutorial documentation built on June 1, 2019, 5:02 p.m.