consensus | R Documentation |
The criterion of the consensus is to produce many trees by means of boostrap and to such calculate the relative frequency with members of the clusters.
consensus(data,distance=c("binary","euclidean","maximum","manhattan",
"canberra", "minkowski", "gower","chisq"),method=c("complete","ward","single","average",
"mcquitty","median", "centroid"),nboot=500,duplicate=TRUE,cex.text=1,
col.text="red", ...)
data |
data frame |
distance |
method distance, see dist() |
method |
method cluster, see hclust() |
nboot |
The number of bootstrap samples desired. |
duplicate |
control is TRUE other case is FALSE |
cex.text |
size text on percentage consensus |
col.text |
color text on percentage consensus |
... |
parameters of the plot dendrogram |
distance: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "gower", "chisq". Method: "ward", "single", "complete", "average", "mcquitty", "median", "centroid". see functions: dist(), hclust() and daisy() of cluster.
table.dend |
The groups and consensus percentage |
dendrogram |
The class object is hclust, dendrogram plot |
duplicate |
Homonymous elements |
F. de Mendiburu
An Introduction to the Boostrap. Bradley Efron and Robert J. Tibshirani. 1993. Chapman and Hall/CRC
hclust
, hgroups
, hcut
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
output<-consensus( pamCIP,distance="binary", method="complete",nboot=5)
# Order consensus
Groups<-output$table.dend[,c(6,5)]
Groups<-Groups[order(Groups[,2],decreasing=TRUE),]
print(Groups)
## Identification of the codes with the numbers.
cbind(output$dendrogram$labels)
## To reproduce dendrogram
dend<-output$dendrogram
data<-output$table.dend
plot(dend)
text(data[,3],data[,4],data[,5])
# Other examples
# classical dendrogram
dend<-as.dendrogram(output$dendrogram)
plot(dend,type="r",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
plot(dend,type="t",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
## Without the control of duplicates
output<-consensus( pamCIP,duplicate=FALSE,nboot=5)
## using distance gower, require cluster package.
# output<-consensus( pamCIP,distance="gower", method="complete",nboot=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.