| consensus | R Documentation | 
The criterion of the consensus is to produce many trees by means of boostrap and to such calculate the relative frequency with members of the clusters.
consensus(data,distance=c("binary","euclidean","maximum","manhattan",
"canberra", "minkowski", "gower","chisq"),method=c("complete","ward","single","average",
"mcquitty","median", "centroid"),nboot=500,duplicate=TRUE,cex.text=1, 
col.text="red", ...)
| data | data frame | 
| distance | method distance, see dist() | 
| method | method cluster, see hclust() | 
| nboot | The number of bootstrap samples desired. | 
| duplicate | control is TRUE other case is FALSE | 
| cex.text | size text on percentage consensus | 
| col.text | color text on percentage consensus | 
| ... | parameters of the plot dendrogram | 
distance: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "gower", "chisq". Method: "ward", "single", "complete", "average", "mcquitty", "median", "centroid". see functions: dist(), hclust() and daisy() of cluster.
| table.dend  | The groups and consensus percentage | 
| dendrogram | The class object is hclust, dendrogram plot | 
| duplicate | Homonymous elements | 
F. de Mendiburu
An Introduction to the Boostrap. Bradley Efron and Robert J. Tibshirani. 1993. Chapman and Hall/CRC
hclust, hgroups, hcut 
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
output<-consensus( pamCIP,distance="binary", method="complete",nboot=5)
# Order consensus
Groups<-output$table.dend[,c(6,5)]
Groups<-Groups[order(Groups[,2],decreasing=TRUE),]
print(Groups)
## Identification of the codes with the numbers.
cbind(output$dendrogram$labels)
## To reproduce dendrogram
dend<-output$dendrogram
data<-output$table.dend
plot(dend)
text(data[,3],data[,4],data[,5])
# Other examples
# classical dendrogram
dend<-as.dendrogram(output$dendrogram)
plot(dend,type="r",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
plot(dend,type="t",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
## Without the control of duplicates
output<-consensus( pamCIP,duplicate=FALSE,nboot=5)
## using distance gower, require cluster package.
# output<-consensus( pamCIP,distance="gower", method="complete",nboot=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.