demo/stock-market-classification.R

# Libraries
library(agtboost)
library(xgboost)
library(randomForest)
library(ISLR) # Contains the "Smarket" data


# -- Data management --
data("Smarket")
# Description
# Daily percentage returns for the S&P 500 stock index between 2001 and 2005.
# Goal: predict "Direction" Up or Down for the market return
# Variables: Percentage return on 1-5 last days, volume

# Remove return today and year
dim(Smarket)

# Out of time validation
ind_train <- which(Smarket$Year <= 2004)

# Remove all-knowing features
Smarket <- subset(Smarket, select=-c(Today, Year))

# One-hot encoding
data <- model.matrix(Direction~., data=Smarket)[,-1]
dim(data)

# Split into train and test datasets
x.train <<- as.matrix(data[ind_train, ])
y.train <<- as.matrix(ifelse(Smarket[ind_train, "Direction"]=="Up",1,0))
x.test <<- as.matrix(data[-ind_train, ])
y.test <<- as.matrix(ifelse(Smarket[-ind_train, "Direction"]=="Up", 1, 0))


# -- Model building --
# agtboost
gbt.mod <- gbt.train(y.train, x.train, learning_rate = 0.01, loss_function = "logloss")
gbt.mod$get_num_trees()

# glm
glm.mod <- glm(y~., data=data.frame(y=y.train, x.train), family=binomial)

#rf
rf.mod <- randomForest(y~., data=data.frame(y=as.factor(y.train), x.train))

#xgb
p.xgb <- list(eta = 0.01, lambda=0, objective="binary:logistic", eval_metric = "logloss") # lambda=0, vanilla 2'nd order gtb
x.train.xgb <- xgb.DMatrix(data=x.train, label = y.train)
xgb.n <- xgb.cv(p.xgb, x.train.xgb, nround=2000, nfold=5, early_stopping_rounds =50, verbose = F)
xgb.nrounds <- which.min(xgb.n$evaluation_log$test_logloss_mean)
xgb.mod <- xgb.train(p.xgb, x.train.xgb, xgb.nrounds)


# -- Predictions and evaluations on test --
iegtb.pred <- predict(gbt.mod, x.test)
glm.pred <- predict(glm.mod, data.frame(y=y.test, x.test), type="response")
rf.pred <- predict(rf.mod, newdata = data.frame(y=y.test, x.test), type = "prob")[,2]
xgb.pred <- xgboost:::predict.xgb.Booster(xgb.mod, x.test)

LogLossBinary = function(y, x) {
    x = pmin(pmax(x, 1e-14), 1-1e-14)
    -sum(y*log(x) + (1-y)*log(1-x)) / length(y)
}

# Does the models beat the average constant prediction from train?
# Or do they overfit?
LogLossBinary(y.test, mean(y.train))
LogLossBinary(y.test, iegtb.pred) # score is before logistic transformation
LogLossBinary(y.test, glm.pred)
LogLossBinary(y.test, rf.pred)
LogLossBinary(y.test, xgb.pred)

Try the agtboost package in your browser

Any scripts or data that you put into this service are public.

agtboost documentation built on Nov. 24, 2021, 1:16 a.m.