Nothing
# This file is part of the R package "aifeducation".
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as published by
# the Free Software Foundation.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>
#' @title Graphical user interface for feature extractors - create
#' @description Functions generates the page for a creating a new [TEFeatureExtractor].
#'
#' @param id `string` determining the id for the namespace.
#' @return This function does nothing return. It is used to build a page for a shiny app.
#'
#' @family studio_gui_page_feature_extractor_create
#' @keywords internal
#' @noRd
#'
FeatureExtractors_Create_UI <- function(id) {
shiny::tagList(
bslib::page_sidebar(
# Sidebar------------------------------------------------------------------
sidebar = bslib::sidebar(
position = "left",
shiny::tags$h3("Control Panel"),
shinyFiles::shinyDirButton(
id = shiny::NS(id, "button_select_dataset_for_embeddings"),
label = "Choose Embeddings",
title = "Please choose a folder",
icon = shiny::icon("folder-open")
),
shiny::tags$hr(),
shiny::textInput(
inputId = shiny::NS(id, "name"),
label = "Model Name",
width = "100%"
),
shiny::textInput(
inputId = shiny::NS(id, "label"),
label = "Model Label",
width = "100%"
),
shinyFiles::shinyDirButton(
id = shiny::NS(id, "start_SaveModal"),
label = "Train Model",
title = "Choose Destination",
icon = shiny::icon("floppy-disk")
)
),
# Main Page---------------------------------------------------------------
# Content depends in the TextEmbeddingModel of the embeddings
# Embeddings
bslib::layout_column_wrap(
bslib::card(
bslib::card_header("Input Data"),
bslib::card_body(
shiny::textInput(
inputId = shiny::NS(id, "embeddings_dir"),
label = shiny::tags$p(shiny::icon("folder"), "Path")
),
shiny::uiOutput(outputId = shiny::NS(id, "summary_data_embeddings"))
)
),
bslib::card(
bslib::card_header(
"Architecture"
),
bslib::card_body(
shiny::sliderInput(
inputId = shiny::NS(id, "features"),
label = "Target Features",
min = 1,
value = 128,
max = 1024,
step = 1,
round = TRUE
),
shiny::selectInput(
inputId = shiny::NS(id, "method"),
label = "Method",
choices = c("lstm", "dense")
),
shiny::sliderInput(
inputId = shiny::NS(id, "noise_factor"),
label = "Noise Factor",
min = 0,
value = 0,
max = 1,
step = .01,
round = TRUE
),
shiny::selectInput(
inputId = shiny::NS(id, "optimizer"),
label = "Optimizer",
choices = c("adam", "rmsprop")
)
)
),
bslib::card(
bslib::card_header(
"Training Settings"
),
bslib::card_body(
shiny::selectInput(
inputId = shiny::NS(id, "sustainability_country"),
label = "Country for Sustainability Tracking",
choices = get_alpha_3_codes(),
# choices=NULL,
selected = "DEU"
),
shiny::sliderInput(
inputId = shiny::NS(id, "data_val_size"),
label = "Proportion for Validation Sample",
min = 0.02,
value = 0.25,
max = 0.5,
step = 0.01
),
shiny::numericInput(
inputId = shiny::NS(id, "epochs"),
label = "Epochs",
min = 1,
value = 40,
step = 1
),
shiny::sliderInput(
inputId = shiny::NS(id, "batch_size"),
label = "Batch Size",
min = 2,
max = 256,
value = 32,
step = 1
)
)
)
)
)
)
}
#' @title Server function for: graphical user interface for feature extractors - create
#' @description Functions generates the functionality of a page on the server.
#'
#' @param id `string` determining the id for the namespace.
#' @param log_dir `string` Path to the directory where the log files should be stored.
#' @param volumes `vector` containing a named vector of available volumes.
#' @return This function does nothing return. It is used to create the functionality of a page for a shiny app.
#'
#' @family studio_gui_page_feature_extractor_create
#' @keywords internal
#' @noRd
#'
FeatureExtractor_Create_Server <- function(id, log_dir, volumes) {
shiny::moduleServer(id, function(input, output, session) {
# global variables-----------------------------------------------------------
# TODO (Yuliia): remove? Variable is not used
ns <- session$ns
log_path <- paste0(log_dir, "/aifeducation_state.log")
# File system management----------------------------------------------------
# Embeddings
shinyFiles::shinyDirChoose(
input = input,
id = "button_select_dataset_for_embeddings",
roots = volumes,
# session = session,
allowDirCreate = FALSE
)
shiny::observeEvent(input$button_select_dataset_for_embeddings, {
path <- shinyFiles::parseDirPath(volumes, input$button_select_dataset_for_embeddings)
shiny::updateTextInput(
inputId = "embeddings_dir",
value = path
)
})
path_to_embeddings <- shiny::eventReactive(input$embeddings_dir, {
if (input$embeddings_dir != "") {
return(input$embeddings_dir)
} else {
return(NULL)
}
})
data_embeddings <- shiny::reactive({
if (!is.null(path_to_embeddings())) {
return(load_and_check_embeddings(path_to_embeddings()))
} else {
return(NULL)
}
})
# Start screen for choosing the location for storing the data set-----------
# Create Save Modal
save_modal <- create_save_modal(
id = id,
# ns=session$ns,
title = "Choose Destination",
easy_close = FALSE,
size = "l"
)
# Implement file connection
shinyFiles::shinyDirChoose(
input = input,
id = "start_SaveModal",
roots = volumes,
allowDirCreate = TRUE
)
# show save_modal
shiny::observeEvent(input$start_SaveModal, {
path <- shinyFiles::parseDirPath(volumes, input$start_SaveModal)
if (!is.null(path) & !identical(path, character(0))) {
if (path != "") {
shiny::showModal(save_modal)
shiny::updateTextInput(
inputId = "save_modal_directory_path",
value = path
)
}
}
})
# Start training------------------------------------------------------------
shiny::observeEvent(input$save_modal_button_continue, {
#Remove Save Modal
shiny::removeModal()
# Check for errors
errors <- check_errors_create_feature_extractor(
destination_path = input$save_modal_directory_path,
folder_name = input$save_modal_folder_name,
path_to_embeddings = path_to_embeddings(),
features = input$features,
model_name = input$name,
model_label = input$label
)
# If there are errors display them. If not start running task.
if (!is.null(errors)) {
display_errors(
title = "Error",
size = "l",
easy_close = TRUE,
error_messages = errors
)
} else {
# Start task and monitor
start_and_monitor_long_task(
id = id,
ExtendedTask_type = "feature_extractor",
ExtendedTask_arguments = list(
name = input$name,
label = input$label,
destination_path = input$save_modal_directory_path,
folder_name = input$save_modal_folder_name,
path_to_embeddings = path_to_embeddings(),
features = input$features,
method = input$method,
noise_factor = input$noise_factor,
optimizer = input$optimizer,
data_val_size = input$data_val_size,
epochs = input$epochs,
batch_size = input$batch_size,
sustain_iso_code = input$sustainability_country,
log_dir = log_dir,
log_write_interval = 3
),
log_path = log_path,
pgr_use_middle = TRUE,
pgr_use_bottom = TRUE,
pgr_use_graphic = TRUE,
update_intervall = 300,
success_type = "classifier"
)
}
})
# Display Data Summary------------------------------------------------------
# Embeddings
output$summary_data_embeddings <- shiny::renderUI({
embeddings <- data_embeddings()
# shiny::req(embeddings)
if (!is.null(embeddings)) {
ui <- create_data_embeddings_description(embeddings)
return(ui)
} else {
return(NULL)
}
})
# Error handling-----------------------------------------------------------
#--------------------------------------------------------------------------
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.