Nothing
# This file does not contain any tests. It is used for creating FeatureExtractors
# that can be used for testing Classifiers
testthat::skip_on_cran()
testthat::skip_if_not(
condition = check_aif_py_modules(trace = FALSE),
message = "Necessary python modules not available"
)
# Start time
test_time_start <- Sys.time()
test_that("Setup Classifier Data", {
# Config-------------------------------------------------------------------------
root_path_data <- testthat::test_path("test_data/Embeddings")
create_dir(root_path_data, FALSE)
root_path_results <- testthat::test_path("test_data_tmp")
create_dir(root_path_results, FALSE)
root_path_results <- testthat::test_path("test_data_tmp/classifier")
create_dir(root_path_results, FALSE)
ml_frameworks <- c("pytorch")
trace <- FALSE
method_list <- "LSTM"
imdb_embeddings <- load_from_disk(paste0(root_path_data, "/imdb_embeddings"))
dataset_list <- list(
"EmbeddedText" = imdb_embeddings,
"LargeDataSetForTextEmbeddings" = imdb_embeddings$convert_to_LargeDataSetForTextEmbeddings()
)
# Start creation and training---------------------------------------------------
for (framework in ml_frameworks) {
for (method in method_list) {
train_path <- paste0(root_path_data)
extractor <- TEFeatureExtractor$new()
extractor$configure(
name = "Test_extractor",
label = "Test Extractor",
text_embeddings = dataset_list[["LargeDataSetForTextEmbeddings"]],
features = 32,
method = method,
orthogonal_method = "matrix_exp",
noise_factor = 0.002
)
extractor$train(
data_embeddings = dataset_list[["LargeDataSetForTextEmbeddings"]],
data_val_size = 0.25,
sustain_track = TRUE,
sustain_iso_code = "DEU",
sustain_region = NULL,
sustain_interval = 15,
sustain_log_level = "error",
epochs = 75,
batch_size = 100,
optimizer = "Adam",
trace = trace,
ml_trace = as.numeric(trace)
)
save_to_disk(
object = extractor,
dir_path = root_path_results,
folder_name = paste0("feature_extractor_", framework)
)
}
}
expect_true(
file.exists(paste0(root_path_results, "/", "feature_extractor_", framework, "/", "model_data.safetensors"))
)
# print("FeatureExtractor for tests generated")
})
# Monitor test time
monitor_test_time_on_CI(
start_time = test_time_start,
test_name = "00_02_setup_classifiers"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.