ErrorCrit | R Documentation |
Function which computes an error criterion with the provided function.
ErrorCrit(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
InputsCrit |
[object of class InputsCrit] see |
OutputsModel |
[object of class OutputsModel] see |
warnings |
(optional) [boolean] boolean indicating if the warning messages are shown, default = |
verbose |
(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = |
If InputsCrit
is of class Single:
[list] containing the ErrorCrit_* functions outputs, see ErrorCrit_RMSE or ErrorCrit_NSE for details |
If InputsCrit
is of class Multi:
[list] of list containing the ErrorCrit_* functions outputs, see ErrorCrit_RMSE or ErrorCrit_NSE for details |
If InputsCrit
is of class Compo:
$CritValue | [numeric] value of the composite criterion |
$CritName | [character] name of the composite criterion |
$CritBestValue | [numeric] theoretical best criterion value |
$Multiplier | [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) |
$CritCompo$MultiCritValues | [numeric] values of the sub-criteria |
$CritCompo$MultiCritNames | [numeric] names of the sub-criteria |
$CritCompo$MultiCritWeights | [character] weighted values of the sub-criteria |
$MultiCrit | [list] of list containing the ErrorCrit_* functions outputs, see ErrorCrit_NSE or ErrorCrit_KGE for details |
Olivier Delaigue
CreateInputsCrit
, ErrorCrit_RMSE
, ErrorCrit_NSE
,
ErrorCrit_KGE
, ErrorCrit_KGE2
library(airGR)
## loading catchment data
data(L0123001)
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR,
Precip = BasinObs$P, PotEvap = BasinObs$E)
## calibration period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"),
which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))
## preparation of RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel,
IndPeriod_Run = Ind_Run)
## simulation
Param <- c(X1 = 257.238, X2 = 1.012, X3 = 88.235, X4 = 2.208)
OutputsModel <- RunModel_GR4J(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param)
## single efficiency criterion: Nash-Sutcliffe Efficiency
InputsCritSingle <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE,
InputsModel = InputsModel, RunOptions = RunOptions,
Obs = list(BasinObs$Qmm[Ind_Run]),
VarObs = "Q", transfo = "",
Weights = NULL)
str(ErrorCrit(InputsCrit = InputsCritSingle, OutputsModel = OutputsModel))
## 2 efficiency critera: RMSE and the Nash-Sutcliffe Efficiency
InputsCritMulti <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_RMSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
Obs = list(BasinObs$Qmm[Ind_Run],
BasinObs$Qmm[Ind_Run]),
VarObs = list("Q", "Q"), transfo = list("", "sqrt"),
Weights = NULL)
str(ErrorCrit(InputsCrit = InputsCritMulti, OutputsModel = OutputsModel))
## efficiency composite criterion: Nash-Sutcliffe Efficiency mixing
## both raw and log-transformed flows
InputsCritCompo <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_NSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
Obs = list(BasinObs$Qmm[Ind_Run],
BasinObs$Qmm[Ind_Run]),
VarObs = list("Q", "Q"), transfo = list("", "log"),
Weights = list(0.4, 0.6))
str(ErrorCrit(InputsCrit = InputsCritCompo, OutputsModel = OutputsModel))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.