Description Usage Arguments Value Examples
latteMin
uses LattE's minimize function to find the minimum of a linear objective function over the integers satisfying linearity constraints. This makes use of the digging algorithm; see the LattE manual at http://www.math.ucdavis.edu/~latte for details.
1 2 |
objective |
a linear polynomial to pass to |
constraints |
a collection of linear polynomial (in)equalities that define the feasibility region, the integers in the polytope |
method |
method LP or cones |
dir |
directory to place the files in, without an ending / |
opts |
options; see the LattE manual at http://www.math.ucdavis.edu/~latte |
quiet |
show latte output |
the count. if the count is a number has less than 10 digits, an integer is returned. if the number has 10 or more digits, an integer in a character string is returned. you may want to use the gmp package's as.bigz to parse it.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ## Not run:
latteMin("-2 x + 3 y", c("x + y <= 10", "x >= 0", "y >= 0"))
latteMin("-2 x + 3 y", c("x + y <= 10", "x >= 0", "y >= 0"),
method = "cones") # ??
df <- expand.grid(x = 0:10, y = 0:10)
df <- subset(df, x + y <= 10)
df$val <- apply(df, 1, function(v) -2*v[1] + 3*v[2])
df[which.min(df$val),]
library(ggplot2)
qplot(x, y, data = df, size = val)
latteMin("-2 x - 3 y - 4 z", c(
"3 x + 2 y + z <= 10",
"2 x + 5 y + 3 z <= 15",
"x >= 0", "y >= 0", "z >= 0"
), "cones",quiet = FALSE)
df <- expand.grid(x = 0:10, y = 0:10, z = 0:10)
df <- subset(df,
(3*x + 2*y + 1*z <= 10) &
(2*x + 5*y + 3*z <= 15)
)
df$val <- apply(df, 1, function(v) -2*v[1] + -3*v[2] + -4*v[3])
df[which.min(df$val),]
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.